全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同生物质原料水热生物炭特性的研究

DOI: 10.11654/jaes.2014.11.027, PP. 2260-2265

Keywords: 木屑,小麦秸秆,玉米秸秆,水热生物炭,特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

以木屑、小麦秸秆和玉米秸秆为原料,采用水热法制备生物炭,研究不同生物质水热生物炭特性,分析了水热生物炭的产率、元素组成、表面特性、多环芳烃含量及表面官能团的变化。结果表明:以木屑为原料制备的水热生物炭产率最高(54.66%),C含量(52.59%)较水热小麦和玉米秸秆生物炭(分别为43.73%和43.93%)高,但O含量(41.56%)明显低于水热小麦和玉米秸秆生物炭(分别为49.94%和50.95%)。扫描电镜显示水热木屑生物炭表面光滑,孔状结构较多且排列整齐,水热小麦生物炭表面粗糙孔隙较少,而水热玉米生物炭孔隙结构不明显。傅里叶红外光谱分析显示原料经水热炭化后官能团种类差异不大,但相对含量发生了变化:水热小麦和玉米秸秆生物炭有机官能团含量相对增加,而无机矿物(如SiO2)含量略有减少;水热木屑生物炭有机官能团和无机矿物的含量均明显增加。采用气质联用仪(GC-MS)分析水热生物炭多环芳烃含量,结果表明三种水热生物炭总多环芳烃含量依次为水热小麦秸秆生物炭>水热木屑生物炭>水热玉米秸秆生物炭,并以菲和萘为主。

References

[1]  毕于运, 高春雨, 王亚静, 等. 中国秸秆资源数量估算[J]. 农业工程学报, 2009, 25(12):211-217. BI Yu-yun, GAO Chun-yu, WANG Ya-jing, et al. Estimation of straw resources in China[J]. Transactions of the CSAE, 2009, 25(12):211-217.
[2]  何咏涛. 利用农林废弃物联产生物油和生物炭[D]. 杭州:浙江工业大学, 2012:1-4. HE Yong-tao. Co-production of activated carbon and bio-oil from agricultural and forestry residues[D]. Hangzhou:Zhejiang University of Technology, 2012:1-4.
[3]  Mumme J, Eckervogt L, Pielert J, et al. Hydrothermal carbonization of anaerobically digested maize silage[J]. Bioresource Technology, 2011, 102(19):9255-9260.
[4]  Acharjee T C, Coronella C J, Vasquez V R. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(7):4849-4854.
[5]  Kobayashi N, Okada N, Hirakawa A, et al. Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass[J]. Industrial & Engineering Chemistry Research, 2008, 48(1):373-379.
[6]  Yan W, Acharjee T C, Coronella C J, et al. Thermal pretreatment of lignocellulosic biomass[J]. Environmental Progress & Sustainable Energy, 2009, 28(3):435-440.
[7]  Libra J A. Ro K S, Kammann C, et al. Hydrothermal carbonization of biomass residuals:A comparative review of the chemistry, processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1):71-106.
[8]  Oliveira I, Blohse D, Ramke H G. Hydrothermal carbonization of agricultural residues[J]. Bioresource Technology, 2013, 142:138-146.
[9]  黄玉莹, 袁兴中, 李 辉, 等. 稻草的水热碳化研究[J]. 环境工程学报, 2013, 7(5):1963-1968. HUANG Yu-ying, YUAN Xing-zhong, LI Hui, et al. Study on hydrothermal carbonization of rice straw[J]. Chinese Journal of Environmental Engineering, 2013, 7(5):1963-1968.
[10]  Xiao L P, Shi Z J, Xu F, et al. Hydrothermal carbonization of lignocellulosic biomass[J]. Bioresource Technology, 2012, 118:619-623.
[11]  Regmi P, Garcia Moscoso J L, Kumar S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J]. Journal of Environmental Management, 2012, 109:61-69.
[12]  Toufiq Reza M, Yan W, Helal Uddin M, et al. Reaction kinetics of hydrothermal carbonization of loblolly pine[J]. Bioresource Technology, 2013, 139:161-169.
[13]  Parshetti G K, Kent Hoekman S, Balasubramanian R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches[J]. Bioresource Technology, 2013, 135:683-689.
[14]  Titirici M M, Thomas A, Antonietti M. Back in the black:Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?[J]. New Journal of Chemistry, 2007, 31(6):787-789.
[15]  Hoekman S K, Broch A, Robbins C. Hydrothermal carbonization(HTC)of lignocellulosic biomass[J]. Energy & Fuels, 2011, 25(4):1802-1810.
[16]  Du Z, Hu B, Shi A, et al. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process[J]. Bioresource Technology, 2012, 126:354-357.
[17]  Kumar S, Loganathan V A, Gupta R B, et al. An assessment of U(Ⅵ)removal from groundwater using biochar produced from hydrothermal carbonization[J]. Journal of Environmental Management, 2011, 92(10):2504-2512.
[18]  Rillig M C, Wagner M, Salem M, et al. Material derived from hydrothermal carbonization:Effects on plant growth and arbuscular mycorrhiza[J]. Applied Soil Ecology, 2010, 45(3):238-242.
[19]  Inagaki M, Park K C, Endo M. Carbonization under pressure[J]. New Carbon Materials, 2010, 25(6):409-420.
[20]  Cui X, Antonietti M, Yu S H. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates[J]. Small, 2006, 2(6):756-759.
[21]  Sun K, Ro K, Guo M, et al. Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars[J]. Bioresource Technology, 2011, 102(10):5757-5763.
[22]  陈再明, 陈宝梁, 周丹丹. 水稻秸秆生物炭的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 2013, 33(1):9-19. CHEN Zai-ming, CHEN Bao-liang, ZHOU Dan-dan. Composition and sorption properties of rice-straw derived biochars[J]. Acta Scientiae Circumstantiae, 2013, 33(1):9-19.
[23]  陈再明, 方 远, 徐义亮, 等. 水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素[J]. 环境科学学报, 2012, 32(4):769-776. CHEN Zai-ming, FANG Yuan, XU Yi-liang, et al. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4):769-776.
[24]  Keiluweit M, Kleber M, Sparrow M A, et al. Solvent-extractable polycyclic aromatic hydrocarbons in biochar:Influence of pyrolysis temperature and feedstock[J]. Environmental Science & Technology, 2012, 46(17):9333-9341.
[25]  Levine R B, Pinnarat T, Savage P E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification[J]. Energy & Fuels, 2010, 24(9):5235-5243.
[26]  张千丰, 孟 军, 刘居东, 等. 热解温度和时间对三种作物残体生物炭 pH 值及碳氮含量的影响[J]. 生态学杂志, 2013, 32(9):2347-2353. ZHANG Qian-feng, MENG Jun, LIU Ju-dong, et al. Effects of pyrolysis temperature and duration time on pH, carbon and nitrogen contents of biochars produced from three crop residues[J]. ChineseJournal of Ecology, 2013, 32(9):2347-2353.
[27]  Chen B, Johnson E J, Chefetz B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:Role of polarity and accessibility[J]. Environmental Science & Technology, 2005, 39(16):6138-6146.
[28]  Chen B L, Zhou D D, Zhu L Z, et al. Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution[J]. Science in China Series B:Chemistry, 2008, 51(5):464-472.
[29]  Yang H, Xu R, Xue X, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal[J]. Journal of Hazardous Materials, 2008, 152(2):690-698.
[30]  Fernandes M B, Brooks P. Characterization of carbonaceous combustion residues:Ⅱ. Nonpolar organic compounds[J]. Chemosphere, 2003, 53(5):447-458.
[31]  Chen B, Yuan M. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar[J]. Journal of Soils and Sediments, 2011, 11(1):62-71.
[32]  何 娇, 孔火良, 韩 进, 等. 秸秆生物质环境材料的制备及对水中多环芳烃的处理性能[J]. 环境科学, 2011, 32(1):135-139. HE Jiao, KONG Huo-liang, HAN Jin, et al. Preparation method of stalk environmental biomaterial and its sorption ability for polycyclic aromatic hydrocarbons in water[J]. Environmental Science, 2011, 32(1):135-139.
[33]  Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon(biochar)[J]. Environmental Science & Technology, 2010, 44(4):1295-1301.
[34]  Hockaday W C, Grannas A M, Kim S, et al. The transformation and mobility of charcoal in a fire-impacted watershed[J]. Geochimica et Cosmochimica Acta, 2007, 71(14):3432-3445.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133