全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米二氧化钛负载腐植酸对菲的吸附行为

DOI: 10.11654/jaes.2014.11.025, PP. 2247-2253

Keywords: 纳米二氧化钛,腐植酸,,吸附

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究腐植酸存在条件下纳米二氧化钛对水体污染物迁移的影响,提取两种代表性腐植酸(泥炭腐植酸和底泥腐植酸),研究了腐植酸存在条件下菲在纳米二氧化钛上的吸附行为。吸附实验采用批量平衡振荡法,考察吸附动力学、菲初始浓度以及环境因素(pH值和离子强度)对吸附的影响。结果表明:腐植酸负载到纳米二氧化钛的表面后,使纳米二氧化钛对菲的吸附能力显著提高,纳米二氧化钛对菲的吸附系数为6.71L·kg-1,负载这两种腐植酸后吸附系数分别为715、348L·kg-1,并且芳香碳含量高的腐植酸对吸附容量的增量效果明显高于脂肪碳含量高的腐植酸;负载腐植酸后对菲的吸附速率明显加快,吸附平衡时间由168h减为48h,并且吸附动力学符合二级动力学模型。体系的pH值和离子强度变化均能影响菲的吸附,可能与不同pH值和离子强度下附着在纳米二氧化钛表面的腐植酸结构不同有关;芳香碳含量高的腐植酸对吸附的影响作用更容易随pH值和离子强度的变化而改变,可能与其在不同条件下的结构变化有关。因此,在评价纳米二氧化钛的环境效应时,腐植酸以及环境因素的影响不容忽视。

References

[1]  郭树梁. 纳米二氧化钛的性能研究及其在环保领域的应用[J]. 广西纺织科技, 2010, 39(3):31-33 GUO Shu-liang. Characteristics of nano titanium dioxide and its application in environmental protection[J]. Guangxi Textile Science and Technology, 2010, 39(3):31-33.
[2]  Pena M, Meng X, Korfiatis G P, et al. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide[J]. Environmental Science & Technology, 2006, 40(4):1257-1262.
[3]  肖亚兵, 钱沙华, 黄淦泉, 等. 纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究[J]. 分析科学学报, 2003, 19(2):172-174. XIAO Ya-bing, QIAN Sha-hua, HUANG Gan-quan, et al. Adsorption properties of nanometer-size TiO2 for As(Ⅲ) and As(Ⅴ)[J]. Journal of Analytical Science, 2003, 19(2):172-174.
[4]  宋晨怡, 胡霞林, 尹大强. 四环素在光催化剂 TiO2上的吸附研究[J]. 环境化学, 2011, 30(7):1291-1296. SONG Chen-yi, HU Xia-lin, YIN Da-qiang. Adsorption of tetracycline TiO2 photocatalyst[J]. Environmental Chemistry, 2011, 30(7):1291-1296.
[5]  Stevenson F J. Humus chemistry:Genesis, composition, reactions[M]. John Wiley & Sons, 1994.
[6]  Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene(C60) nanoparticles in monovalent and divalent electrolyte solutions[J]. Journal of Colloid and Interface Science, 2007, 309(1):126-134.
[7]  Laor Y, Farmer W J, Aochi Y, et al. Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid[J]. Water Research, 1998, 32(6):1923-1931.
[8]  Yang K, Xing B. Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO[J]. Environmental Science & Technology, 2009, 43(6):1845-1851.
[9]  Wang X, Lu J, Xu M, et al. Sorption of pyrene by regular and nanoscaled metal oxide particles:Influence of adsorbed organic matter[J]. Environmental Science & Technology, 2008, 42(19):7267-7272.
[10]  Swift R S. Organic matter characterization[J]. Methods of Soil Analysis Part 3-Chemical Methods, 1996, 1011-1069.
[11]  ünlü N, Ersoz M. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions[J]. Journal of Hazardous Materials, 2006, 136(2):272-280.
[12]  余志扬, 岳 玲, 汪海燕, 等. [A 环-U-14C] 丙酯草醚在土壤中的吸附与解吸特性研究[J]. 核农学报, 2008, 22(3):324-328. YU Zhi-yang, YUE Ling, WANG Hai-yan, et al. Sorption and desorption of [A ring-U-14C] ZJ0273 in soils[J]. Journal of Nuclear Agricultural Sciences, 2008, 22(3):324-328.
[13]  吴其圣, 杨 琛, 胡秀敏, 等. 环境因素对纳米二氧化钛颗粒在水体中沉降性能的影响[J]. 环境科学学报, 2012, 32(7):1596-1603. WU Qi-sheng, YANG Chen, HU Xiu-min, et al. Influences of environmental factors on aggregation of titanium dioxide nanoparticles[J]. Acta Scientiae Circumstantiae, 2012, 32(7):1596-1603.
[14]  Kang S, Amarasiriwardena D, Veneman P, et al. Characterization of ten sequentially extracted humic acids and a humin from a soil in western Massachusetts[J]. Soil Science, 2003, 168(12):880-887.
[15]  Lu X, Hanna J, Johnson W. Source indicators of humic substances:An elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study[J]. Applied Geochemistry, 2000, 15(7):1019-1033.
[16]  De Paolis F, Kukkonen J. Binding of organic pollutants to humic and fulvic acids:Influence of pH and the structure of humic material[J]. Chemosphere, 1997, 34(8):1693-1704.
[17]  Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay[J]. Journal of Colloid and Interface Science, 2004, 278(1):18-25.
[18]  Ho Y S. Second-order kinetic model for the sorption of cadmium onto tree fern:A comparison of linear and non-linear methods[J]. Water research, 2006, 40(1):119-125.
[19]  吴应琴, 周 敏, 马明广, 等. 不溶性腐植酸吸附对硝基苯胺的动力学研究[J]. 水处理技术, 2007, 33(2):14-17. WU Ying-qin, ZHOU Min, MA Ming-guang, et al. Adsorption kinetics of P-Nitraoniline on the insolubilized humic acid[J]. Technology of Water Treatment, 2007, 33(2):14-17.
[20]  李朝丽, 周立祥. 黄棕壤不同粒级组分对镉的吸附动力学与热力学研究[J]. 环境科学, 2008, 29(5):1406-1411. LI Chao-li, ZHOU Li-xiang. Kinetics and thermodynamics of Cd(Ⅱ)adsorption onto particle-sized fractions of yellow brown soil[J]. Environmental Science, 2008, 29(5):1406-1411.
[21]  周岩梅, 张 琼, 汤鸿霄. 多环芳烃类有机物在腐植酸上的吸附行为研究[J]. 环境科学学报, 2010, 30(8):1564-1571. ZHOU Yan-mei, ZHANG Qiong, TANG Hong-xiao. Sorption behavior of polycyclic aromatic hydrocarbons onto humic acid particulates[J]. Acta Scientiae Circumstantiae, 2010, 30(8):1564-1571
[22]  余贵芬, 青长乐, 牟树森, 等. 汞在腐植酸上的吸附与解吸特征[J]. 环境科学学报, 2001, 21(5):601-606. YU Gui-fen, QING Chang-le, MOU Shu-sen, et al. Characteristics of mercury adsorption and desorption on humic acids[J]. Acta Scientiae Circumstantiae, 2001, 21(5):601-606.
[23]  Huang W, Schlautman M A, Weber W J. A distributed reactivity model for sorption by soils and sediments:5. The influence of near-surface characteristics in mineral domains[J]. Environmental Science & Technology, 1996, 30(10):2993-3000.
[24]  Mader B T, Uwe-Goss K, Eisenreich S J. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces[J]. Environmental Science & Technology, 1997, 31(4):1079-1086.
[25]  Perminova I V, Grechishcheva N Y, Petrosyan V S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons:Relevance of molecular descriptors[J]. Environmental Science & Technology, 1999, 33(21):3781-3787.
[26]  Ahmad R, Kookana R S, Alston A M, et al. The nature of soil organic matter affects sorption of pesticides:1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy[J]. Environmental Science & Technology, 2001, 35(5):878-884.
[27]  Davis J A. Adsorption of natural dissolved organic matter at the oxide/water interface[J]. Geochimica et Cosmochimica Acta, 1982, 46(11):2381-2393.
[28]  李毓骐, 朱亚先, 鹿贞彬, 等. 荧光极性探针在腐植酸和芘相互作用研究中的应用[J]. 厦门大学学报(自然科学版), 2007, 46(1):59-62. LI Yu-qi, ZHU Ya-xian, LU Zhen-bin, et al. Study on the interaction between humic acid and pyreneby polarity probe[J]. Journal of Xiamen University(Natural Science), 2007, 46(1):59-62
[29]  李文慧, 李爱民, 王学军. pH 值和离子强度对胡敏酸与芘之间相互作用的影响[J]. 环境化学, 2009, 28(5):636-639. LI Wen-hui, LI Ai-min, WANG Xue-jun. Effects of pH values and ionic strengths on bindings between humic acid and pyrene[J]. Environmental Chemistry, 2009, 28(5):636-639.
[30]  Cuypers C, Grotenhuis T, Nierop K G, et al. Amorphous and condensed organic matter domains:The effect of persulfate oxidation on the composition of soil/sediment organic matter[J]. Chemosphere, 2002, 48(9):919-931.
[31]  Lee C L, Kuo L J, Wang H L, et al. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances:Three-stage variation model[J]. Water Research, 2003, 37(17):4250-4258.
[32]  罗雪梅, 刘昌明. 离子强度对土壤与沉积物吸附多环芳烃的影响研究[J]. 生态环境, 2006, 15(5):983-987. LUO Xue-mei, LIU Chang-ming. Effects of Ca2+ ionic strength on sorption of polycyclic aromatic hydrocarbons(PAHs) on soils and sediments in Yellow River Delta[J]. Ecology and Environment, 2006, 15(5):983-987.
[33]  龙石红, 邓 斌. 不同分散剂对二氧化钛颗粒分散稳定性的影响[J]. 渝西学院学报(自然科学版), 2003, 2(4):12-14. LONG Shi-hong, DENG Bin. Influence of different dispersants on dispersion stabilities of TiO2 powders in water[J]. Journal of Western Chong-qing University(Nature Sciences Edition), 2003, 2(4):12-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133