全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大气CO2和O3浓度升高对淡水环境水化学条件的影响

DOI: 10.11654/jaes.2014.11.020, PP. 2213-2220

Keywords: CO2,O3,复合效应,水生生态系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

在开顶式气室OTC(Opentopchamber)平台下,构建微宇宙水环境模拟系统,初步研究了当大气CO2浓度升高200μL·L-1、O3浓度升高50nL·L-1及其复合作用下,水体理化参数(pH、Eh、可溶态Zn、Mg、Fe以及可溶态总氮、总磷)、沉积物理化性质(pH、Eh、Zn、Mg和Fe的形态)的变化。经5个月的持续观察发现,与正常大气条件相比,CO2升高(600±10)μL·L-1,水体pH下降,可溶态Zn、Mg浓度升高,可溶态总磷浓度无明显变化;O3升高(125±20)nL·L-1,水体pH无明显变化,可溶态Zn、Mg、总磷浓度无明显变化;CO2和O3复合升高(600±10)μL·L-1CO2,(125±20)nL·L-1O3,水体pH下降,可溶态Zn浓度无明显变化,可溶态Mg、总磷浓度升高。结果表明:CO2单独升高可降低水体pH,促进沉积物对金属元素的释放;O3单独升高对水体pH、沉积物释放元素无明显影响;而CO2+O3复合升高可降低水体pH,促进沉积物对Mg和磷的释放。

References

[1]  Solomon S. Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[M]. Cambridge: Cambridge University Press, 2007:501-533.
[2]  Waters J F, Millero F J, Sabine C L. Changes in south pacific anthropogenic carbon[J]. Global Biogeochemical Cycles, 2011, 25(4). DOI:10. 1029/2010GB003988.
[3]  Raven J, Caldeira K, Elderfield H, et al. Ocean acidification due to increasing atmospheric carbon dioxide[M]. London: The Royal Society, 2005:5-14.
[4]  Lacoue-labarthe T, Réveillac E, Oberhansli F, et al. Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo Vulgaris[J]. Aquatic Toxicology, 2011, 105(1):166-176.
[5]  Doney S C, Fabry V J, Feely R A, et al. Ocean acidification:The other CO2 problem[J]. Marine Science, 2009(1):169-192.
[6]  伍 文, 黄益宗, 李明顺, 等. O3浓度升高对麦田土壤氨氧化细菌, 氨氧化古菌和硝化细菌数量的影响[J]. 农业环境科学学报, 2012, 31(3):491-497. WU Wen, HUANG Yi-zong, LI Ming-shun, et al. Effects of elevated ozone on quantity of ammonium-oxidizing bacteria, ammonia-oxidizing achaea and nitrobacteria in wheat field soil[J]. Journal of Agro-Environment Science, 2012, 31(3):491-497
[7]  尹微琴, 张贤臣, 王小治, 等. O3浓度升高对麦季土壤-植株系统中微量元素的影响[J]. 农业环境科学学报, 2012, 31(11):2094-2100. YIN Wei-qin, ZHANG Xian-chen, WANG Xiao-zhi, et al. Effect of O3 enrichment on DTPA-extractable microelements in soil and accumulation of microelements of mature crops in the wheat season[J]. Journal of Agro-Environment Science, 2012, 31(11):2094-2100.
[8]  邵在胜, 赵轶鹏, 宋琪玲, 等. 大气CO2和O3浓度升高对水稻汕优63叶片光合作用的影响[J]. 中国生态农业科学, 2014, 22(4):422-429. SHAO Zai-sheng, ZHAO Yi-peng, SONG Qi-ling, et al. Impact of elevated atmospheric carbon dioxide and ozone concentrations on leaf photosynthesis of Shanyou 63 hybrid rice[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4):422-429
[9]  Kobayakawa H, Imai K. Effects of the interaction between ozone and carbon dioxide on gas exchange, photosystem Ⅱ and antioxidants in rice leaves[J]. Photosynthetica, 2011, 49(2):227-238.
[10]  房 蕊, 鲁彩艳, 史 奕. CO2和O3浓度升高对土壤碳水化合物累积分布特征的影响[J]. 农业环境科学学报, 2010, 29(增刊):285-288. FANG Rui, LU Cai-yan, SHI Yi. A review:Effects of elevated CO2 and O3 on accumulation and distribution characteristics of soil carbohydrate[J]. Journal of Agro-Environment Science, 2010, 29(Suppl):285-288.
[11]  孙曙光, 尹 颖, 郭红岩. 大气CO2浓度升高对砷污染水体生态风险的影响[J]. 南京大学学报(自然科学版), 2013, 49(3):387-393. SUN Shu-guang, YIN Ying, GUO Hong-yan. Elevated CO2 levels affects the ecological risk of arsenic pollution water[J]. Journal of Nanjing University(Natural Science), 2013, 49(3):387-393.
[12]  XU H, Pearl H W, Qin B, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic lake Taihu, China[J]. Limnology and Oceanography, 2010, 55(1):420.
[13]  Atli G, Canli M. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal(Cd, Cu, Cr, Zn, Fe) exposures[J]. Ecotoxicology and Environmental Safety, 2010, 73(8):1884-1889.
[14]  Spencer D F, Greene R W, Theis T L, et al. A Study of the relationship between phytoplankton abundance and trace metal concentrations in eutrophic lake Charles East, using correlation techniques[C]//Proceedings of the Indiana Academy of Science, 1977:204-212.
[15]  Sarkar A, Agrawal S B. Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone by using open top chambers[J]. Journal of Environmental Management, 2012, 95(Suppl):19-24.
[16]  Henry H A L. Soil extracellular enzyme dynamics in a changing climate[J]. Soil Biology and Biochemistry, 2012, 47:53-59.
[17]  国家环境保护总局. 水和废水监测分析方法[M]. 四版. 北京:中国环境科学出版社, 2002:243-257. State Environmental Protection Administration. Methods for the monitoring and analysis of water and wastewater[M]. 4th Edition. Beijing:China Environmental Science Press, 2002:243-257.
[18]  章海波, 骆永明, 赵其国, 等. 香港土壤研究Ⅶ. BCR提取法研究重金属的形态及其潜在环境风险[J]. 土壤学报, 2010(5):865-871. ZHANG Hai-bo, LUO Yong-ming, ZHAO Qi-guo, et al. Hong Kong soil researches Ⅶ:Research on fractions of heavy metals and their potential environmental risks in soil based on BCR sequential extraction[J]. Acta Pedologica Sinica, 2010(5):865-871.
[19]  吴金浩, 刘桂英, 王年斌, 等. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报, 2012, 30(2):333-339. WU Jin-hao, LIU Gui-ying, WANG Nian-bin, et al. The Eh in surface sediments in the northern of Liaodong bay and its main influencing factors[J]. Acta Pedologica Sinica, 2012, 30(2):333-339.
[20]  王 媛, 李铁龙, 刘大喜, 等. 电位测定法测海水氧化还原电位的不确定度评定[J]. 海洋技术, 2012, 31(1):123-126. WANG Yuan, LI Tie-long, LIU Da-xi, et al. Uncertainty evaluation of the oxidation-reduction potentials of sea water using the potentiometric method[J]. Ocean Technology, 2012, 31(1):123-126.
[21]  黄少远, 张 华, 岑琼军, 等. 养殖水体提高氧化还原电位的方法[J]. 科学养鱼, 2013(11):87-87. HUANG Shao-yuan, ZHANG Hua, CEN Qiong-jun, et al. The methods for increase the Eh of aquaculture water[J]. Scientific Fish Farming, 2013(11):87-87.
[22]  朱广伟. 运河(杭州段)沉积物污染特征、释放规律及其环境效应的研究[D]. 杭州:浙江大学, 2001:64-84. ZHU Guang-wei. Pollution characteristics of the sediment of the Hangzhou section of the Grand Canal, China, and its pollution releasing mechanism and ecological effects[D]. Hangzhou:Zhejiang University, 2001:64-84.
[23]  于海涛, 潘伟斌, 侯晓辉. 供水水库沉积物中铁锰的释放规律研究[J]. 工业安全与环保, 2012(4):72-75. YU Hai-tao, PAN Wei-bin, HOU Xiao-hui. Study on release of iron and manganese from sediments in a water-supply reservoir[J]. Industrial Safety and Dust Control, 2012(4):72-75.
[24]  朱梦圆, 朱广伟, 王永平. 太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J]. 环境科学, 2011(2):409-415. ZHU Meng-yuan, ZHU Guang-wei, WANG Yong-ping. Influence of scum of algal bloom on the release of N and P from sediments of Lake Taihu[J]. Environmental Science, 2011(2):409-415.
[25]  林华实. 水体沉积物中的氮磷释放规律研究[D]. 广州:广东工业大学, 2011:16-27. LIN Hua-shi. The research of release law of nitrogen and phosphorus in sediment[D]. Guangzhou: Guangdong University of Technology, 2011:16-27.
[26]  李 鹏. 霞湾港底泥中锌和铅释放特性的研究[D]. 长沙:湖南大学, 2011:42-52. LI Peng. Study on release of zinc and lead in sediment of Xiawan[D]. Changsha:Hunan University, 2011:42-52.
[27]  徐 畅, 高 明. 土壤中镁的化学行为及生物有效性研究进展[J]. 微量元素与健康研究, 2007(5):51-54. XU Chang, GAO Ming. The development of research about transformation and boiavailability of magnesium in soil[J]. Studies of Trace Elements and Health, 2007(5):51-54.
[28]  姚 波, 席北斗, 胡春明, 等. 铁限制对浮游植物生长和群落组成的影响研究综述[J]. 生态环境学报, 2010(2):459-465. YAO Bo, XI Bei-dou, HU Chun-ming, et al. Influence of iron limitation on phytoplankton growth and community composition:A review[J]. Ecology and Environmental Sciences, 2010(2):459-465.
[29]  王新建, 王松波, 耿 红. 东湖、汤逊湖和梁子湖沉积物磷形态及pH对磷释放的影响[J]. 生态环境学报, 2013, 22(5):810-814. WANG Xin-jian, WANG Song-bo, GENG Hong. Phosphorus fractions and the influence of pH on the release of phosphorus from sediments in the Donghu Lake, Tangxun Lake and Liangzi Lake[J]. Ecology and Environmental Sciences, 2013, 22(5):810-814.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133