James C. Global status of commercialized Biotech/GM crops:2013[R]. New York: ISAAA, 2013.
[2]
Wolt J D, Peterson R K D. Prospective formulation of environmental risk assessment:Probabilistic screening for Cry1A(b) maize risk to aquatic insects[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1182-1188.
[3]
Groffman P and Bohlen P. Soil and sediment biodiversity-cross-system comparisons and large-scale effects[J]. Bioscience, 1999, 49(2):139-148.
[4]
Hannula S E, de Boer W, van Veen J A. Do genetic modifications in crops affect soil fungi? A review[J]. Biology and Fertility of Soils, 2014, 50(3):433-446.
[5]
贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29(1):406-415. HE Ji-zheng, ZHANG Li-mei. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle[J]. Acta Ecologica Sinica, 2009, 29(1):406-415.
[6]
Li M, Gu J D. Community structure and transcript responses of anammox bacteria, AOA, and AOB in mangrove sediment microcosms amended with ammonium and nitrite[J]. Applied Microbiology and Biotechnology, 2013, 97(22):9859-9874.
[7]
李永春, 刘卜榕, 郭 帅, 等. 亚热带不同林分土壤氨氧化菌群落特征[J]. 应用生态学报, 2014, 25(1):125-131. LI Yong-chun, LIU Piao-rong, GUO Shuai, et al. Characteristics of soil ammonia-oxidation microbial communities in different subtropical forests, China[J]. Chinese Journal of Applied Ecology, 2014, 25(1):125-131.
[8]
周磊榴, 祝贵兵, 王衫允, 等. 洞庭湖岸边带沉积物氨氧化古菌的丰度、多样性及对氨氧化的贡献[J]. 环境科学学报, 2013, 33(6):1741-1747. ZHOU Lei-liu, ZHU Gui-bing, WANG Shan-yun, et al. Abundance, biodiversity and contribution to ammonia oxidization of ammonia oxidizing archaea in littoral sediments of Dongting Lake[J]. Acta Scientiae Circumstaniae, 2013, 33(6):1741-1747.
[9]
Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso sea[J]. Science, 2004, 304:66-74.
[10]
Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12):1985-1995.
[11]
Han P, Niu C Y, Lei C L, et al. Quantification of toxins in a Cry1Ac+ CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L[J]. Ecotoxicology, 2010, 19(8):1452-1459.
[12]
李永山, 范巧兰, 陈 耕, 等. 利用PLFA方法研究转Bt基因棉花对土壤微生物群落结构变化的影响[J]. 棉花学报, 2009, 21(6):503-507. LI Yong-shan, FAN Qiao-lan, CHEN Geng, et al. Soil microbial community structure change analysis of transgenic Bt Cotton based on phospholipid fatty acid method[J]. Cotton Science, 2009, 21(6):503-507.
[13]
叶 飞, 宋存江, 陶 剑, 等. 转基因棉花种植对根际土壤微生物群落功能多样性的影响[J]. 应用生态学报, 2010, 21(2):386-390. YE Fei, SONG Cun-jiang, TAO Jian, et al. Effects of planting transgenic cotton on functional diversity of rhizosphere soil microbial community[J]. Chinese Journal of Applied Ecology, 2010, 21(2):386-390.
[14]
Knox O G G, Nehl D B, Mor T, et al. Genetically modified cotton has no effect on arbuscular mycorrhizal colonization of roots[J]. Fields Crops Research, 2008, 109(1-3):57-60.
[15]
Li X G, Liu B, Cui J J, et al. No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms[J]. Plant and Soil, 2011, 339(1):247-257.
[16]
邓 欣, 赵廷昌, 高必达. 转基因抗虫棉叶围卡那霉素抗性细菌种群动态及nptⅡ基因漂移研究[J]. 中国农业科学, 2007, 40(11):2488-2494. DENG Xin, ZHAO Ting-chang, GAO Bi-da. Dynamics in kanamycin-resistant bacterial population and shift of nptⅡ gene in the phyllosphere of insect-resistant transgenic cotton[J]. Agricultural Science in China, 2007, 40(11):2488-2494.
[17]
Helassa N, Quiquampoix H, Noinville S, et al. Adsorption and desorption of monomeric Bt(Bacillus thruingienis) Cry1Aa toxin on montomorillonite and kaolinite[J]. Soil Biology and Biochemistry, 2009, 41(3):498-504.
[18]
Chen Z H, Chen L J, Zhang Y L, et al. Microbial properties, enzyme activities and the persistence of exogenous proteins in soil under consecutive cultivation of transgenic cottons(Gossypium hirsutum L.)[J]. Plant Soil and Environment, 2011, 57(2):67-74.
[19]
Chen Z H, Chen L J, Wu Z J. Relationships among persistence of Bacillus thruingiensis and Cowpea trypsin inhibitor proteins, microbial properties and enzymatic activities in rhizosphere soil after repeated cultivation with transgenic cotton[J]. Applied Soil Ecology, 2012, 53(1):23-30.
[20]
李 刚, 修伟明, 赵建宁, 等. 转基因抗虫棉花重组DNA在土壤中分布的实时定量PCR分析[J]. 农业环境科学学报, 2012, 31(10):1933-1940. LI Gang, XIU Wei-ming, ZHAO Jian-ning, et al. Real time PCR assays for the distribution of recombinant DNA of a transgenic insect-resistant cotton in soil[J]. Journal of Agro-Environment Science, 2012, 31(10):1933-1940.
[21]
Heuberger S, Ellers-Kirk C, Tabashnik B E, et al. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields[J]. PLoS ONE, 2010, 5(11):e14128.
[22]
鲍士旦. 土壤农化分析[M]. 三版. 北京:中国农业出版社, 2008:39-89. BAO Shi-dan. Soil and agriculture chemistry analysis[M]. 3rd Edition. Beijing:China Agriculture Press. 2008:39-89.
[23]
Ai C, Liang G Q, Sun J W, et al. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil[J]. Soil Biology and Biochemistry, 2013, 57:30-42.
[24]
Wang Y, Ke X, Wu L, et al. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization[J]. Systematic and Applied Microbiology, 2009, 32(1):27-36.
[25]
Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41):14683-14688.
[26]
Yuan H Z, Ge T D, Zou S Y, et al. Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1, 5-biphosphate carboxylase/oxygenase(RubisCO) large subunit gene abundance in soils[J]. Biology and Fertility of Soils, 2013, 49:609-616.
[27]
Lukow T, Dunfield P F, Liesack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure with in an agricultural soil planted with transgenic and no transgenic potato plants[J]. FEMS Microbiology Ecology, 2000, 32(3):241-247.
[28]
Yuan H Z, Ge T D, Wu X H, et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase(RubisCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology, 2012, 95:1061-1071.
[29]
Ducey T F, Shriner A D, Hunt P G. Nitrification and denitrification gene abundances in swine sastewater anaerobic lagoons[J]. Journal of Environmental Quality, 2011, 40(2):610-619.
[30]
Nakaya A, Onodera Y, Nakagawa T, et al. Analysis of ammonia monooxygenase and archaeal 16S rRNA gene fragments in nitrifying acid-sulfate soil microcosms[J]. Microbes and Environments, 2009, 24(2):168-174.
[31]
Hayden H L, Drake J, Imhof M, et al. The abundance of nitrogen cycle genes amoA and nif H depends on land-uses and soil types in South-Eastern Australia[J]. Soil Biology and Biochemistry, 2010, 42(10):1774-1783
[32]
Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442:806-809.
[33]
Schauss K, Focks A, Leininger S, et al. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils[J]. Environmental Microbiology, 2009, 11(2):446-456.
[34]
王亚男, 曾希柏, 王玉忠, 等. 设施蔬菜种植年限对氮素循环微生物群落结构和丰度的影响[J]. 应用生态学报, 2014, 25(4):1115-1124. WANG Ya-nan, ZENG Xi-bai, WANG Yu-zhong, et al. Effects of vegetable cultivation years on microbial biodiversity and abundance of nitrogen cycling in greenhouse soils[J]. Chinese Journal of Applied Ecology, 2014, 25(4):1115-1124.
[35]
Shen J P, Zhang L M, Di H J, et al. A review of ammonia-oxidizing bacteria and archaea in Chinese soils[J]. Frontiers in Microbiology, 2012(3):296.
[36]
Valentine D L. Adaptation to energy stress dictate the ecology and evolution of the archaea[J]. Nature Reviews Microbiology, 2007, 5(4):316-323.
[37]
董莲华, 孟 盈, 王 晶. 转Bt+CpTI基因棉花对根际土壤细菌及氨氧化细菌数量的影响[J]. 微生物学报, 2014, 54(3):309-318. DONG Lian-hua, MENG Ying, WANG Jing. Effects of transgenic Bt+ CpTI cotton on rhizosphere bacteria and ammonia oxidizing bacteria population[J]. Acta Microbiologica Sinica, 2014, 54(3):309-318.
[38]
Gao J F, Luo X, Wu G X, et al. Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants[J]. Bioresource Technology, 2013, 138:285-296.
[39]
Xiao R, Chen B, Liu Y J, et al. Higher abundance of ammonia oxidizing archaea than ammonia oxidizing bacteria and their communities in Tibetan Alpine Meadow soils under long-term nitrogen fertilization[J]. Geomicrobiology Journal, 2014, 31:597-604.
[40]
刘立雄. 转基因棉花种植对根际土壤氮转化相关酶的影响[J]. 作物杂志, 2010(3):69-71. LIU Li-xiong. Effects of transgenic cotton planting on rhizosphere soil N transformation related soil enzyme activities[J]. Crops, 2010(3):69-71.
[41]
Lauber C L, Ramirez K S, Aanderud Z, et al. Temporal variability in soil microbial communities across land-use types[J]. The ISME Journal, 2013, 7(8):1641-1650.
[42]
Dumont M G, Pommerenke B, Casper P. Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment[J]. Environmental Microbiology Reports, 2013, 5(5):757-764.