全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

污灌区镉污染菜地的植物阻隔和钝化修复研究

DOI: 10.11654/jaes.2014.11.006, PP. 2111-2117

Keywords: 植物阻隔修复,钝化修复,镉低积累品种,油菜,海泡石,膨润土,鸡粪

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了比较植物阻隔、化学钝化及其联合修复措施对污灌区镉污染菜地的修复效果,通过大田试验,研究施用黏土矿物海泡石、膨润土和鸡粪对普通油菜和镉低积累油菜生长和镉吸收的影响,并通过重金属形态分析探讨其作用机理。结果表明,施用鸡粪可显著提高普通油菜和镉低积累油菜的地上部生物量,最大增产率分别为42.8%和127.8%,而施用黏土矿物则没有显著的增产作用。黏土矿物和鸡粪配合施用显著降低普通油菜地上部镉含量,最大降幅为50.5%,使其低于食品安全标准(GB2762—2012)规定的叶菜类镉含量限值0.2mg·kg-1;所有钝化处理均显著减少低积累品种地上部镉含量,使其符合食品安全标准要求。施用鸡粪显著降低土壤有效态镉含量,最大降幅为37.0%,而单独施用黏土矿物对土壤镉有效性没有显著影响;施用黏土矿物和鸡粪促进土壤镉由活性高的可交换态向活性低的残渣态或有机结合态转化,从而显著降低了镉的生物有效性。总之,种植镉低积累品种同时施用黏土矿物和鸡粪,即联合应用植物阻隔和钝化修复措施,可以更好地保障污灌区镉污染菜地的安全利用。

References

[1]  Li L Y, Li F. Heavy metal sorption and hydraulic conductivity studies using three types of bentonite admixes[J]. Journal of Environmental Engineering, 2001, 127(5):420-429.
[2]  Liu L N, Chen H S, Cai P, et al. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost[J]. Journal of Hazardous Materials, 2009, 163(2-3):563-567.
[3]  白玲玉, 陈世宝, 华 珞, 等. 腐植酸与Cd、Zn 的络合特性研究[J] . 核农学报, 2000, 14(1):44-48. BAI Ling-yu, CHEN Shi-bao, HUA Luo, et al. Studies on characteristics of complexation of Cd and Zn with humic acids[J]. Acta Agriculturae Nucleatae Sinica, 2000, 14(1):44-48.
[4]  Koukal B, Guéguen C, Pardos M, et al. Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata[J]. Chemosphere, 2003, 53(8):953-961.
[5]  Herwijnen R, Hutchings T R, Al-Tabbaa A, et al. Remediation of metal contaminated soil with mineral-amended composts[J]. Environmental Pollution, 2007, 150(3):347-354.
[6]  王贵玲, 蔺文静. 污水灌溉对土壤的污染及其整治[J]. 农业环境科学学报, 2003, 22(2):163-166. WANG Gui-ling, LIN Wen-jing. Contamination of soil from sewage irrigation and its remediation[J]. Journal of Agro-Environment Science, 2003, 22(2):163-166.
[7]  徐 震, 田丽梅, 江应松, 等. 天津市污灌区农田环境质量现状分析[J]. 天津农林科技, 1999(6):26-28. XU Zhen, TIAN Li-mei, JIANG Ying-song, et al. The present situation analysis of environmental quality of sewage-irrigated farmland in Tianjin[J]. Science and Technology of Tianjin Agriculture and Forestry, 1999(6):26-28.
[8]  王祖伟, 李宗梅, 王景刚, 等. 天津污灌区土壤重金属含量与理化性质对小麦吸收重金属的影响[J]. 农业环境科学学报, 2007, 26(4):1406-1410. WANG Zu-wei, LI Zong-mei, WANG Jing-gang, et al. Absorption to heavy metals by wheat and influencing features in sewage- irrigated soil in Tianjin[J]. Journal of Agro-Environment Science, 2007, 26(4):1406-1410.
[9]  孙约兵, 徐应明, 史 新, 等. 污灌区镉污染土壤钝化修复及其生态效应研究[J]. 中国环境科学, 2012, 32(8):1467-1473. SUN Yue-bing, XU Ying-ming, SHI Xin, et al. The immobilization remediation of Cd contaminated soils in wastewater irrigation region and its ecological effects[J]. China Environmental Science, 2012, 32(8):1467-1473.
[10]  王立群, 罗 磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20(5):1214-1222. WANG Li-qun, LUO Lei, MA Yi-bing, et al. In situ immobilization remediation of heavy metals-contaminated soils:A review[J]. Chinese Journal of Applied Ecology, 2009, 20(5):1214-1222.
[11]  Udeigwe T K, Eze P N, Teboh J M, et al. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality[J]. Environment International, 2011, 37(1):258-267.
[12]  Dickinson N M, Baker A J M, Doronila A, et al. Phytoremediation of inorganics:realism and synergies[J]. International Journal of Phytoremediation, 2009, 11(2):97-114.
[13]  Mench M, Lepp N, Bert V, et al. Successes and limitations of phytotechnologies at field scale:Outcomes, assessment and outlook from COST Action 859[J]. Journal of Soils and Sediments, 2010, 10(6):1039-1070.
[14]  Tang Y T, Deng T H B, Wu Q T, et al. Designing cropping systems for metal-contaminated sites:A review[J]. Pedosphere, 2012, 22(4):470-488.
[15]  Wang L, Xu Y M, Sun Y B, et al. Identification of pakchoi cultivars with low cadmium accumulation and soil factors that affect their cadmium uptake and translocation[J]. Frontiers of Environmental Science & Engineering, 2014, doi:10. 1007/s11783-014-0676-7.
[16]  王 林, 徐应明, 孙 扬, 等. 海泡石及其复配材料钝化修复镉污染土壤[J]. 环境工程学报, 2010, 4(9):2093- 2098. WANG Lin, XU Ying-ming, SUN Yang, et al. Immobilization of cadmium contaminated soils using sepiolite and its compound materials[J]. Chinese Journal of Environmental Engineering, 2010, 4(9):2093- 2098.
[17]  梁学峰, 徐应明, 王 林, 等. 天然黏土联合磷肥对农田土壤镉铅污染原位钝化修复效应研究[J]. 环境科学学报, 2011, 31(5):1011-1018. LIANG Xue-feng, XU Ying-ming, WANG Lin, et al. In-situ immobilization of cadmium and lead in a contaminated agricultural field by adding natural clays combined with phosphate fertilizer[J]. Acta Scientiae Circumstantiae, 2011, 31(5):1011-1018.
[18]  王 林, 徐应明, 梁学峰, 等. 广西刁江流域Cd和Pb复合污染稻田土壤的钝化修复[J]. 生态与农村环境学报, 2012, 28(5):563-568. WANG Lin, XU Ying-ming, LIANG Xue-feng, et al. Remediation of contaminated paddy soil by immobilization of pollutants in the Diaojiang catchment, Guangxi[J]. Journal of Ecology and Rural Environment, 2012, 28(5):563-568.
[19]  中华人民共和国农业部. NY/T 890—2004 土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法[S]. 北京:中国标准出版社, 2005. Ministry of Agriculture of PRC. NY/T 890—2004 Determination of available zinc, manganese, iron, copper in soil-extraction with buffered DTPA solution[S]. Beijing:China Standards Press, 2005.
[20]  Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical chemistry, 1979, 51(7):844-850.
[21]  鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000:25-200. BAO Shi-dan. Soil and agricultural chemistry analysis[M]. Beijing:China Agricultural Press, 2000:25-200.
[22]  徐明岗, 张 青, 王伯仁, 等. 改良剂对重金属污染红壤的修复效果及评价[J]. 植物营养与肥料学报, 2009, 15(1):121-126. XU Ming-gang, ZHANG Qing, WANG Bo-ren, et al. Evaluation the remediation effects of amendments in heavy metal polluted red soil[J]. Plant Nutrition and Fertilizer Science, 2009, 15(1):121-126.
[23]  王 林, 徐应明, 孙 扬, 等. 天然黏土矿物原位钝化修复镉污染土壤的研究[J]. 安全与环境学报, 2010, 10(3):35-38. WANG Lin, XU Ying-ming, SUN Yang, et al. Immobilization of cadmium contaminated soils using natural clay minerals[J]. Journal of Safety and Environment, 2010, 10(3):35-38.
[24]  Bolan N S, Adriano D C, Mani P A, et al. Immobilization and phytoavailability of cadmium in variable charge soils:Ⅱ. Effect of lime addition[J]. Plant and Soil, 2003, 251(2):187-198.
[25]  Shirvani M, Kalbasi M, Shariatmadari H, et al. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions:Isotherm hysteresis[J]. Chemosphere, 2006, 65(11):2178-2184.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133