吴德礼, 傅旻瑜, 马鲁铭. 生物及化学反硝化过程中N2O的产生与控制[J]. 化学进展, 2012, 24(10):2055-2061. WU De-li, FU Min-yu, MA Lu-ming. Nitrous oxide emission and control in biological and chemical denitrification[J]. Progress in Chemistry, 2012, 24(10):2055-2061.
[2]
Juan A M, Malcolm Y, Pedro á. Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts[J]. Applied Catalysis B:Environmental, 2007, 70(1-4):330-334.
[3]
Yamazaki T, Yoshida N, Wada E, et al. N2O reduction by Azotobacter vinelandii with emphasis on kinetic nitrogen isotope effects[J]. Plant Cell Physiol, 1987, 28(2):263-271.
[4]
Vieten B, Conen F, Seth B, et al. The fate of N2O consumed in soils[J]. Biogeosciences, 2008, 5:129-132.
[5]
Cavigelli M A, Robertson G P. The functional significance of denitrifier community composition in a terrestrial ecosystem[J]. Ecology, 2000, 81(5):1402-1414.
[6]
Chen D L, Chalk P M. Distribution of reduced products of 15N-labelled nitrate in anaerobic soils[J]. Soil Biology & Biochemistry, 1995, 27(12):1539-1545.
[7]
Dendooven L, Anderson J M. Dynamics of reduction enzymes involved in the denitrification process in pasture soil[J]. Soil Biology & Biochemistry, 1994, 26(11):1501-1506.
[8]
Letey J, Valoras N, Hadas A, et al. Effect of air-filled porosity, nitrate concentration, and time on the ratio of N2O/N2 evolution during denitrification[J]. Journal of Environmental Quality, 1980, 9(2):227-231.
[9]
Smith M S, Firestone M K, Tiedje J M. Acetylene inhibition methods for short-term measurement of soil denitrification and its evaluation using 15N[J]. Soil Science Society of America Journal, 1978, 42:611-615.
[10]
Mei L J, Yang L Z, Wang D J. Nitrous oxide production and consumption in serially diluted soil suspensions as related to in situ N2O emission in submerged soils[J]. Soil Biology & Biochemistry, 2004, 36:1057-1066.
[11]
邹国元, 张福锁. 根际反硝化作用与N2O释放[J]. 中国农业大学学报, 2002, 7(l):77-82. ZOU Guo-yuan, ZHANG Fu-suo. Denitrification in rhizosphere and N2O emission[J]. Journal of China Agricultural University, 2002, 7(l):77-82.
[12]
Seada M N I A, Ottow J C G. Effect of increasing oxygen concentration on total denitrification and nitrous oxide release from soil by different bacteria[J]. Biology and Fertility of Soils, 1985, 1(1):31-38.
[13]
Anderson I C, Levine J S. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers[J]. Applied and Environmental Microbiology, 1986, 51(5):938-945.
[14]
Munch J C. Nitrous oxide emission from soil as determined by the composition of denitrifying microbial population[M]// Berthelin J. Diversity of environmental biogeochemistry. Amsterdam: Elsevier, 1991:309-316.
[15]
Zhu X, Burger M, Doane T A, et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability[J]. Proceeding of the National Academy of Sciences, 2013, 110(16):6328-6333.
[16]
Cavigelli M A, Robertson G P. Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem[J]. Soil Biology & Biochemistry, 2001, 33(3):297-310.
[17]
方晶晶, 马传明, 刘存富. 反硝化细菌研究进展[J]. 环境科学与技术, 2010, 33(6E):206-210. FANG Jing-jing, MA Chuan-ming, LIU Cun-fu. Research progress on denitrifying bacteria[J]. Environmental Science & Technology, 2010, 33(6E):206-210.
[18]
Punshon S, Moore R M. Nitrous oxide production and consumption in a eutrophic coastal embayment[J]. Marine Chemistry, 2004, 91(1-4):37-51.
[19]
Morley N, Baggs E M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction[J]. Soil Biology and Biochemistry, 2010, 42(10):1864-1871.
[20]
Zumft W G, Kroneck P M H. Respiratory transformation of nitrous oxide(N2O) to dinitrogen by bacteria and archaea[J]. Advances in Microbial Physiology, 2006, 52:107-227.
[21]
孙英杰, 吴 昊, 王亚楠. 硝化反硝化过程中N2O释放影响因素[J]. 生态环境学报, 2011, 20(2):384-388. SUN Ying-jie, WU Hao, WANG Ya-nan. The influence factors on N2O emissions from nitrification and denitrification reaction[J]. Ecology and Environmental Sciences, 2011, 20(2):384-388.
[22]
Zehnder A J B. Biology of anaerobic microorganisms[M]. New York:Wiley, 1988:66.
[23]
李成芳, 寇志奎, 张植盛, 等. 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J]. 农业环境科学学报, 2011, 30(11):2362-2367. LI Cheng-fang, KOU Zhi-kui, ZHANG Zhi-sheng, et al. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice field[J]. Journal of Agro-Environment Science, 2011, 30(11):2362-2367.
[24]
万云帆, 李玉娥, 高竹青, 等. 田间管理对华北平原冬小麦产量土壤碳及温室气体排放的影响[J]. 农业环境科学学报, 2009, 28(12):2495-2500. WAN Yun-fan, LI Yu-e, GAO Zhu-qing, et al. Field managements affect yield, soil carbon, and greenhouse gases emission of winter wheat in North China Plain[J]. Journal of Agro-Environment Science, 2009, 28(12):2495-2500.
[25]
史 奕, 黄国宏. 土壤中反硝化酶活性变化与N2O排放的关系[J]. 应用生态学报, 1999, 10(3):329-331. SHI Yi, HUANG Guo-hong. Relationship between soil denitrifying enzyme activities and N2O emission[J]. Chinese Journal of Applied Ecology, 1999, 10(3):329-331.
[26]
Morkved P T, Dorsch P, Bakken L R. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH[J]. Soil Biology & Biochemistry, 2007, 39(8):2048-2057.
[27]
Raieh J W, Potter C. Global patterns of carbon dioxide emissions from soil[J]. Global Biogeochemistry Cycles, 1995, 9(1):23-36.
[28]
王长科, 罗新正, 张 华. 全球增温潜势和全球温变潜势对主要国家温室气体排放贡献估算的差异[J]. 气候变化研究进展, 2013, 9(1):49-54. WANG Chang-ke, LUO Xin-zheng, ZHANG Hua. Differences between the shares of greenhouse gas emissions calculated with GTP and GWP for major countries[J]. Advances in Climate Change Research, 2013, 9(1):49-54.
[29]
Wang F, Han X Z, Li L B, et al. How freezing and thawing processes affect black-soil aggregate stability in Northeastern China[J]. Sciences in Cold and Arid Regions. 2010, 2(1):67-72.
[30]
Wu D M, Dong W X, Oenema O, et al. N2O consumption by low-nitrogen soil and its regulation by water and oxygen[J]. Soil Biology & Biochemistry, 2013, 60:165-172.
[31]
Cohen Y, Gordon L I. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific:Evidence for its consumption during denitrification and possible mechanisms for its production[J]. Deep Sea Research, 1978, 25(6):509-524.
[32]
Chapuis-Lardy L, Wrage N, Metay A, et al. Soils, a sink for N2O? A review[J]. Global Change Biology, 2007, 13(1):1-17.
[33]
Goldberg S D, Gebauer G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought[J]. Soil Biology & Biochemistry, 2009, 41(9):1986-1995.
[34]
Majeed M Z, Miambi E, Robert A. Xylophagous termites:A potential sink for atmospheric nitrous oxide[J]. European Journal of Soil Biology, 2012, 53:121-125.
[35]
Schlesinger W H. An estimate of the global sink for nitrous oxide in soils[J]. Global Change Biology, 2013, 19:2929-2931.
[36]
Majumdar D. Biogeochemistry of N2O uptake and consumption in submerged soils and rice fields and implications in climate change[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(24):2653-2684.
[37]
Audet J, Hoffmann C C, Andersen P M, et al. Nitrous oxide fluxes in undisturbed riparian wetlands located in agricultural catchments:Emission, uptake and controlling factors[J]. Soil Biology & Biochemistry, 2014, 68:291-299.
[38]
Xiong Z Q, Xing G X, Zhu Z L. Water dissolved nitrous oxide from paddy agroecosystem in China[J]. Geoderma, 2006, 136:524-532.
[39]
Wrage N, Velthof G L, Van Beusichem M L, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology & Biochemistry, 2001, 33(12):1723-1732.
[40]
Fanning J C. The chemical reduction of nitrate in aqueous solution[J]. Coordination Chemistry Reviews, 2000, 199(1):159-179.
[41]
Burford J R, Bremner J M. Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter[J]. Soil Biology & Biochemistry, 1975, 7(6):389-394.
[42]
Sánchez-Martín L, Vallejo A, Dick J, et al. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils[J]. Soil Biology & Biochemistry, 2008, 40(1):142-151.
[43]
Saleh-Lakha S, Shannon K E. Effect of pH and temperature on denitrification gene expression and activity in pseudomonas mandelii[J]. Applied and Environmental Microbiology, 2009, 75(12):3903-3911.
[44]
刘杏认, 董云社, 齐玉春. 土壤N2O排放研究进展[J]. 地理科学进展, 2005, 24(6):50-57. LIU Xing-ren, DONG Yun-she, QI Yu-chun. Research progresses in nitrous oxide emission from soil[J]. Progress in Geography, 2005, 24(6):50-57.
[45]
马 放,周丹丹,王宏宇,等. 一株好氧反硝化细菌生理生态特征的研究[J]. 哈尔滨工业大学学报, 2006, 38(4):575-577. MA Fang, ZHOU Dan-dan, WANG Hong-yu, et al. Characteristics of psammophytes of an aerobic denitrifier[J]. Journal of Harbin Institute of Technology, 2006, 38(4):575-577.
[46]
Blackmer A M, Bremner J M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms[J]. Soil Biology & Biochemistry, 1978, 10(3):187-191.
[47]
Cuhel J, Simek M, Laughlin R J. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity[J]. Applied and Environmental Microbiology, 2010, 76(6):1870-1878.
[48]
Itakura M, Tabata K, Eda S. Generation of Bradyrhizobium japonicum mutants with increased N2O reductase activity by selection after introduction of a mutated dnaQ gene[J]. Applied and Environmental Microbiology, 2008, 74(23):7258-7264.
[49]
Hoch G E, Schneider K C, Burris R H. Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules[J]. Biochimica et Biophysica Acta, 1960, 37(2):273-279.