全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硝化抑制剂的微生物抑制机理及其应用

DOI: 10.11654/jaes.2014.11.001, PP. 2077-2083

Keywords: 硝化作用,硝化抑制剂,氨氧化细菌,氨氧化古菌

Full-Text   Cite this paper   Add to My Lib

Abstract:

硝化作用是导致我国农业氮肥利用率低以及地表水和地下水污染的主要原因,且对温室气体氧化亚氮(N2O)的排放具有显著影响。硝化抑制剂可通过选择性抑制土壤硝化微生物的活动,有效减缓土壤中铵态氮向硝态氮的转化,是农业生产中常用的提高氮肥利用率和减少硝化作用负面效应的一种有效管理方式。近年来,分子生态学技术的迅速发展使人们可以从分子水平上认识和研究硝化作用及抑制机理。本文综合论述了农业生产中常用的硝化抑制剂(双氰胺、3,4-甲基吡唑磷酸盐、2-氯-6-三氯甲基吡啶和乙炔等)的作用机理和特征,特别是不同抑制剂对氨氧化细菌和氨氧化古菌的影响差异,同时总结了利用硝化抑制剂(双氰胺、乙炔和烯丙基硫脲等)在硝化作用及其相关功能微生物研究中所取得的重要进展,以期为深刻认识和理解土壤硝化作用和硝化抑制剂作用机理,合理利用硝化抑制剂提供参考。

References

[1]  Di H J, Cameron K C, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience, 2009, 2(9): 621-624.
[2]  Monaghan R M, Smith L C, de Klein C A M. The effectiveness of the nitrification inhibitor dicyandiamide(DCD) in reducing nitrate leaching and nitrous oxide emissions from a grazed winter forage crop in southern New Zealand[J]. Agriculture, Ecosystems & Environment, 2013, 175: 29-38.
[3]  Dai Y, Di H J, Cameron K C, et al. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil[J]. Science of the Total Environment, 2013, 465: 125-135.
[4]  Lehtovirta-Morley L E, Verhamme D T, Nicol G W, et al. Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil[J]. Soil Biology and Biochemistry, 2013, 62: 129-133.
[5]  Weiske A, Benckiser G, Ottow J C G. Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane(CH4) oxidation during 3 years of repeated applications in field experiments[J]. Nutrient Cycling in Agroecosystems, 2001, 60(1-3): 57-64.
[6]  Di H J, Cameron K C. How does the application of different nitrification inhibitors affect nitrous oxide emissions and nitrate leaching from cow urine in grazed pastures?[J]. Soil Use and Management, 2012, 28(1): 54-61.
[7]  Zerulla W, Barth T, Dressel J, et al. 3,4-Dimethylpyrazole phosphate (DMPP): A new nitrification inhibitor for agriculture and horticulture[J]. Biology and Fertility of Soils, 2001, 34(2): 79-84.
[8]  Di H J, Cameron K C. Inhibition of ammonium oxidation by a liquid formulation of 3,4-Dimethylpyrazole phosphate(DMPP) compared with a dicyandiamide(DCD) solution in six new Zealand grazed grassland soils[J]. Journal of Soils and Sediments, 2011, 11(6): 1032-1039.
[9]  Li H, Chen Y, Liang X, et al. Mineral-nitrogen leaching and ammonia volatilization from a rice-rapeseed system as affected by 3,4-dimethylpyrazole phosphate[J]. Journal Environmental Quality, 2009, 38(5): 2131-2137.
[10]  Vitale L, Ottaiano L, Polimeno F, et al. Effects of 3,4-dimethylphyrazole phosphate-added nitrogen fertilizers on crop growth and N2O emissions in Southern Italy[J]. Plant Soil and Environment, 2013, 59(11): 517-523.
[11]  殷建祯, 俞巧钢, 符建荣, 等. 不同作用因子下有机无机配施添加DMPP对氮素转化的影响[J]. 土壤学报, 2013, 50(3): 574-583. YIN Jian-zhen, YU Qiao-gang, FU Jian-rong, et al. Effects of combined application of organic and inorganic fertilizers plus DMPP on nitrogen transformation in soils as affected by different factors[J]. Acta Pedologica Sinica, 2013, 50(3): 574-583.
[12]  Barth G, von Tucher S, Schmidhalter U. Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor[J]. Biology and Fertility of Soils, 2001, 34: 98-102.
[13]  Vannelli T, Hooper A. Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxiding bacterium nitrosomonas europaea[J]. Applied and Environmental Microbiology, 1992, 58(7): 2321-2325.
[14]  许 超, 邝丽芳, 吴启堂, 等. 2-氯-6(三氯甲基)吡啶对菜地土壤氮素转化和径流流失及菜心品质的影响[J]. 水土保持学报, 2013, 27(6): 26-30. XU Chao, KUANG Li-fang, WU Qi-tang, et al. Effects of nitrification inhibitor Nitrapyrin on nitrogen transformation and nitrogen loss and quality of Brassica parachinensis in vegetable soil[J]. Journal of Soil and Water Conservation, 2013, 27(6): 26-30.
[15]  顾艳, 吴良欢, 刘彦伶, 等. 氯甲基吡啶剂型对土壤硝化的抑制效果初步研究[J]. 农业环境科学学报, 2013, 32(2): 251-258. GU Yan, WU Liang-huan, LIU Yan-ling, et al. A preliminary study on the inhibitory effect of Nitrapyrin formulations on soil nitrification[J]. Journal of Agro-Environment Science, 2013, 32(2): 251-258.
[16]  Shen T, Stieglmeier M, Dai J, et al. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors[J]. FEMS Microbiology Letters, 2013, 344(2): 121-129.
[17]  Belser L W, Schmidt E L. Inhibitory effect of nitrapyrin on 3 genera of ammonia-oxidizing nitrifiers[J]. Applied and Environmental Microbiology, 1981, 41(3): 819-821.
[18]  Mccarty G W, Bremner J M. Inhibition of nitrification in soil by acetylenic-compounds[J]. Soil Science Society of America Journal, 1986, 50(5): 1198-1201.
[19]  Hyman M R, Arp D J. 14C2H2-labeling and 14CO2-labeling studies of the denovo synthesis of polypeptides by nitrosomonas-europaea during recovery from acetylene and light inactivation of ammonia monooxygenase[J]. Journal of Biological Chemistry, 1992, 267(3): 1534-1545.
[20]  赵 维, 蔡祖聪. 乙炔抑制方式对潮土硝化和矿化作用的影响[J]. 土壤, 2011, 43(4): 584-589. ZHAO Wei, CAI Zu-cong. The effects of methods of exposure to acetylene on nitrification and mineralization in the fluvo-aquic soil[J]. Soils, 2011, 43(4): 584-589.
[21]  Jia Z, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7): 1658-1671.
[22]  Offre P, Prosser J I, Nicol G W. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene[J]. FEMS Microbiology Ecology, 2009, 70(1): 99-108.
[23]  Yaseen M, Arshad M, Khalid A. Effect of acetylene and ethylene gases released from encapsulated calcium carbide on growth and yield of wheat and cotton[J]. Pedobiologia, 2006, 50(5): 405-411.
[24]  Khalid A, Akhtar M J, Mahmood M H, et al. Effect of substrate-dependent microbial ethylene production on plant growth[J]. Microbiology, 2006, 75(2): 231-236.
[25]  孙志梅, 武志杰, 陈利军, 等. 土壤硝化作用的抑制剂调控及其机理[J]. 应用生态学报, 2008, 19(6): 1389-1395. SUN Zhi-mei, WU Zhi-jie, CHEN Li-jun, et al. Regulation of soil nitrification with nitrification inhibitors and related mechanisms[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1389-1395.
[26]  Taylor A E, Vajrala N, Giguere A T, et al. Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria[J]. Applied and Environmental Microbiology, 2013, 79(21): 6544-6551.
[27]  Puttanna K, Gowda N M N, Rao E V S P. Evaluation of nitrification inhibitors for use under tropical conditions[J]. Communications in Soil Science and Plant Analysis, 1999, 30(3-4): 519-524.
[28]  Hyman M, Sansomesmith A, Shears J, et al. A kinetic-study of benzene oxidation to phenol by whole cells of Nitrosomonas-europaea and evidence for the future oxidation of phenol to hydroquinone[J]. Achives of Microbiology, 1985, 143(3): 302-306.
[29]  Zhang L L, Wu Z J, Shi Y F, et al. Inhibitory effects of aromatic compounds on soil nitrification[J]. Pedosphere, 2010, 20(3): 326-333.
[30]  Subbarao G V, Sahrawat K L, Nakahara K, et al. Biological nitrification inhibition: A novel strategy to regulate nitrification in agricultural systems[J]. Advances in Agronomy, 2012, 114: 249-302.
[31]  Subbarao G V, Nakahara K, Hurtado M P, et al. Evidence for biological nitrification inhibition in Brachiaria pastures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17302-17307.
[32]  Subbarao G V, Nakahara K, Ishikawa T, et al. Biological nitrification inhibition(BNI) activity in sorghum and its characterization[J]. Plant and Soil, 2012, 366(1-2): 243-259.
[33]  Zakir H A K M, Subbarao G V, Pearse S J, et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum(Sorghum bicolor)[J]. New Phytologist, 2008, 180(2): 442-451.
[34]  Philippe Ginestet, Jean-Marc Audic, Vincent Urbain, et al. Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allythiourea and azide[J]. Applied and Environmental Microbiology, 1998, 64(6): 2266-2268.
[35]  Farmaha B S. Evaluating Animo model for predicting nitrogen leaching in rice and wheat[J]. Arid Land Research and Management, 2014, 28(1):25-35.
[36]  McCarty C W. Modes of action of nitrification inhibitor[J]. Biology and Fertility of Soils, 1999, 29(1):1-9.
[37]  孙志梅, 武志杰, 陈利军, 等. 硝化抑制剂的施用效果、影响因素及其评价[J]. 应用生态学报, 2008, 19(7):1611-1618. SUN Zhi-mei, WU Zhi-jie, CHEN Li-jun, et al. Application effect, affecting factors, and evaluation of nitrification inhibitor:A review[J]. Chinese Journal of Applied Ecology, 2008, 19(7):1611-1618.
[38]  武志杰, 史云峰, 陈利军. 硝化抑制作用机理研究进展[J]. 土壤通报, 2008, 39(4):962-970. WU Zhi-jie, SHI Yun-feng, CHEN Li-jun. Research progress of the mechanisms of nitrification inhibition[J]. Chinese Journal of Soil Science, 2008, 39(4):962-970.
[39]  Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12):1985-1995.
[40]  Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304(5667):66-74.
[41]  Zhang L M, Hu H W, Shen J P, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. ISME J, 2012, 6(5):1032-1045.
[42]  Arp D J, Sayavedra-Soto L A, Hommes N G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea[J]. Archives of Microbiology, 2002, 178(4):250-255.
[43]  Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J]. PLoS Biology, 2006, 4(4):520-536.
[44]  Walker C B, Torre J R d l, Klotz M G, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8818-8823.
[45]  Robertson L, Vanniel E, Torremans R, et al. Simultaneous nitrification and denitrification in Aerobic Chemostat of Thiosphaera pantotropha[J]. Applied and Environmental Microbiology, 1988, 54(11):2812-2818.
[46]  Schimel J, Firestone M, Killham K. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques[J]. Applied and Environmental Microbiology, 1999, 48(4):802-806.
[47]  王连峰, 蔡祖聪. 淹水与湿润水分前处理对旱地酸性土壤氧化亚氮和二氧化碳排放的影响[J]. 环境科学学报, 2011, 31(8):1736-1744. WANG Lian-feng, CAI Zu-cong. Nitrous oxide and carbon dioxide emissions from upland acidic soils under flooding and moistening pretreatments[J]. Acta Scientiae Circumstantiae, 2011, 31(8):1736-1744.
[48]  王连峰, 蔡祖聪. 前期不同水分状况对土壤氧化亚氮排放的影响[J]. 土壤学报, 2009, 46(5):802-808. WANG Lian-feng, CAI Zu-cong. Effects of antecedent water regimes on nitrous oxide emission from an arable soil[J]. Chinese Journal of Soil Science, 2009, 46(5):802-808.
[49]  Tourna M, Stieglmeier M, Spang A, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20):8420-8425.
[50]  Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook[J]. Communications in Soil Science and Plant Analysis, 1989, 20(19-20): 1933-1955.
[51]  Zacherl B, Amberger A. Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas-Europaea[J]. Fertilizer Research, 1990, 22(1): 37-44.
[52]  Iizumi T, Mizumoto M, Nakamura K. A bioluminescence assay using Nitrosomonas europaeafor rapid and sensitive detection of nitrification inhibitors[J]. Applied and Environmental Microbiology, 1998, 64(10): 3656-3662.
[53]  Zaman M, Blennerhassett J D. Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system[J]. Agriculture, Ecosystems & Environment, 2010, 136(3-4): 236-246.
[54]  Linquist B A, Adviento-Borbe M A, Pittelkow C M, et al. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis[J]. Field Crops Research, 2012, 135: 10-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133