全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微囊藻毒素在铜锈环棱螺肝组织中的累积 降解及对3种酶活性的影响

Keywords: 微囊藻毒素(MC),生物标志物,酸性磷酸酶(ACP),碱性磷酸酶(ALP),谷胱甘肽硫转移酶(GST),铜锈环棱螺(Bellamya,aeruginosa)

Full-Text   Cite this paper   Add to My Lib

Abstract:

把铜锈环棱螺(Bellamyaaeruginosa)暴露于不同浓度的有毒微囊藻藻液中(对照组:只投喂四尾柵藻(Scenedesmusquadricanda);混合藻组:50%四尾柵藻+50%铜绿微囊藻(Microcystisaeruginosa);蓝藻组:只投喂铜绿微囊藻),用酶联免疫检测法(Enzyme-linkedimmunosorbentassay,ELISA)检测藻液和肝组织中藻毒素浓度,藻液中包括藻相和水相的总微囊藻毒素(MC)浓度分别为:对照组0 μg·L-1;混合藻组(14.47±1.22)μg·L-1;蓝藻组(29.47±2.43)μg·L-1。螺在两种不同毒素浓度藻液中暴露15d后再移入四尾柵藻藻液中降解15d。结果表明,暴露期间,混合藻组、蓝藻组螺肝组织中MC含量均为先增加后减少,再增加,且同期混合藻组MC含量都明显高于蓝藻组;作为机体代谢生物标志物的酸性磷酸酶(ACP)和碱性磷酸酶(ALP)活性随MC浓度及其暴露时间发生相应变化;作为解毒生物标志物的谷胱甘肽硫转移酶(GST)活性在混合藻组先被诱导后被抑制,在蓝藻组初期变化不明显后表现为诱导。在15d降解过程中,混合藻组和蓝藻组MC含量均持续下降;机体生物标志物ACP、ALP和GST活性表现为不同程度的降低。本试验结果为ACP、ALP和GST活性作

References

[1]  Carmichael W W. The toxins of cyanobacteria[J]. Sci Am, 1994(270): 64-72.
[2]  Codd G A, Ward C J, Bell S G. Cyanobacterial toxins: Occurrence, modes of action, health effects and exposure routes [J]. Applied Toxicology, 1997(19): 399-410.
[3]  Figereido De, Azeiteiro D R, Esteves U M,et al. Microcystin-producing blooms-a serious global public health issue[J]. Ecotox Environ Saf, 2004 (59): 151-163.
[4]  徐立红 张甬元.微囊藻毒素分子致毒机理研究进展[J].水生生物学报,1993,17(4):365-374.
[5]  Fastner J, Codd G A, Metcalf J S, et al. An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material[J]. Anal Biochem Chem, 2002 (374): 437-444.
[6]  Hallegreff G M. A review of harmful algal bloom and their apparent global increase[J]. Phycologia, 1993, 32(2): 79.
[7]  Dawson R M. The toxicology of microcystins[J]. Toxicon, 1998, 6 (7): 953-962.
[8]  Codd G A, Bell S G, Knya K, et al. Cyanobacterial toxin exposure routes and human health[J]. Eur J Phrcol, 1999(34): 405.
[9]  Falconer I R,Beresford A, Runnear M T C. Evidence of liver damage in a human population exposed to toxin from a bloom of the blue-green alga Microcystis aeruginosa in a drinking water supply reservoirs[J]. Med J Aust, 1983(1): 511.
[10]  Yu S Z. Drinking water and primary liver cancer[M]. Beijing: Academic Press, 1989.
[11]  徐立红 张甬元.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报,:.
[12]  Mazorra M T, Rubio J A, Blasco J. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: Kinetic characteristics and effects of heavy metals[J]. Comp Biochem Physiol B, 2002(131): 241-249.
[13]  Cajaraville M P, Bebianno M J, Blasco J, et al. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: A practical approach[J]. Sci Total Environ, 2000(247):295- 311.
[14]  Karuppasamy R. Effect of phenyl mercuric acetate(PMA) on acid and alkaline phosphatase activities in the selected tissue of fish[J]. Environ Ecol, 2000(18)z: 643-650.
[15]  Molina R, Moreno I, Pichardo S, et al. Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions[J]. Toxicon, 2005(46): 725-735.
[16]  Pietsch C, Wiegand C, Ame M V, et al. The effects of a cyanobacterial crude extract on different aquatic organisms: Evidence for cyanobacterial toxin modulating factors[J]. Environ Toxicol, 2001, 16(6):535-542.
[17]  Chen W, Song L R, Ou D Y, et al. Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microeystin-LR[J]. Environ Toxicol, 2005, 20(3):323-330.
[18]  Rosa C E, da Souza M S, de Yunes J S, et al. Cyanobacterial blooms in estuarine ecosystems: Characteristics and effects on Laeonereis acuta (Polychaeta, Nereididae) [J]. Mar Pollut Bull, 2005, 50(9):956-964.
[19]  Malbrouck C, Kestemont P. Effects of microcystins on fish[J]. Environ Toxicol Chem, 2006(25):72-86.
[20]  Fu J, Xie P. The acute effects of microcystin-LR on the transcription of nine glutathione S-transferase genes in common carp (Cyprinus carpio L)[J]. Aquat Toxicol, 2005,80(3): 261-266.
[21]  Li X Y, Liu Y D, Song L R, et al. Responses of antioxidant systems in thehepatocytesofcommoncarp (Cyprinus carpio L.) to the toxicity of microcystin-LR[J]. Toxicon, 2003(42):85-89.
[22]  Hilscnhoff W L. Rapid field assessment of organic pollution with a family-level biotic index[J]. J North Am Benthol Soc, 1988(73): 65-68.
[23]  Ghorpade N, Mehta V, Khare M, et al. Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala [J]. Ecotox Environ Saf, 2002 (53): 255-258.
[24]  Bhavan P S, Geraldine P. Profiles of acid and alkaline phosphatases in the prawn Macrobrachium malcolmsanii exposed to endosulfan[J]. Environ Biol, 2004(25): 213-219.
[25]  Pichardo S, Jos A, Zurita J L, et al. The use of the fish cell lines RTG-2 and PLHC-1 to compare the toxic effects produced by microcystins LR and RR[J]. Toxicol in Vitro, 2005, 19(7): 865-873.
[26]  Ding W, Ong C. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity[J]. FEMS Microbiol Lett, 2003, 220: 1-7.
[27]  Bouauiicha N, Maatouk I. Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes[J]. Toxicol Lett, 2004, 148 (1-2): 53-63.
[28]  Moreno I, Pichardo S, Jos A, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally[J]. Toxicon, 2005, 45 (4): 395-402.
[29]  Pflugmacher S, Wiegand C, Oberemm A L, et al. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication[J]. Biochim Biophys Acta, 1998, 1425: 527-533.
[30]  Cazenave J, Bistoni M A, Pesce S F, et al. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR[J]. Aquat Toxicol, 2006, 76 (1): 1-12.
[31]  Li X Y, Chung I K, Kim J I, et al. Oral exposure to Microcystis increases activity-augmented antioxidant enzymes in the liver of loach (Misgurnus mizolepis) and has no effect on lipid peroxidation[J]. Comp Biochem Physiol C: Toxicol Pharmacol, 2005, 141(3):292-296.
[32]  Fitzpatrick P J, O Halloran J, Sheehan D, et al. Assessment of a glutathione S-transferase and related proteins in the gill and digestive gland of Mytilus edulis(L.), as potential organic pollution biomarkers [J]. Biomarkers, 1997(2): 51-56.
[33]  郑朔方 杨苏文 金相灿.铜绿微囊藻生长的营养动力学[J].环境科学,2005,26(2):152-156.
[34]  成永旭.生物饵料培养学[M](第二版)[M].北京:中国农业出版社,2005.75.
[35]  张维昊 金丽娜 等.鱼肉中微囊藻毒素的高效液相色谱法分析[J].分析科学学报,:.
[36]  李效宇 刘永定 张榜军.微囊藻毒索对澳洲水泡螺的毒性效应[J].河南师范大学学报:自然科学版,2005,33(4):106—109.
[37]  Williams D E, Dawe S C, Kent M L, et al. Bioaceumulation and clearance of microcystins from salt water mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues [J]. Toxicon, 1997, 35: 1617-1625.
[38]  Ozawa K, Yokoyama A, Ishikawa K, et al. Accumulation and depuration of microcystins produced by the cyanobacterium Microcystis in a freshwater snail[J]. Limnol, 2003(4): 131- 138.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133