Carmichael W W. The toxins of cyanobacteria[J]. Sci Am, 1994(270): 64-72.
[2]
Codd G A, Ward C J, Bell S G. Cyanobacterial toxins: Occurrence, modes of action, health effects and exposure routes [J]. Applied Toxicology, 1997(19): 399-410.
[3]
Figereido De, Azeiteiro D R, Esteves U M,et al. Microcystin-producing blooms-a serious global public health issue[J]. Ecotox Environ Saf, 2004 (59): 151-163.
Fastner J, Codd G A, Metcalf J S, et al. An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material[J]. Anal Biochem Chem, 2002 (374): 437-444.
[6]
Hallegreff G M. A review of harmful algal bloom and their apparent global increase[J]. Phycologia, 1993, 32(2): 79.
[7]
Dawson R M. The toxicology of microcystins[J]. Toxicon, 1998, 6 (7): 953-962.
[8]
Codd G A, Bell S G, Knya K, et al. Cyanobacterial toxin exposure routes and human health[J]. Eur J Phrcol, 1999(34): 405.
[9]
Falconer I R,Beresford A, Runnear M T C. Evidence of liver damage in a human population exposed to toxin from a bloom of the blue-green alga Microcystis aeruginosa in a drinking water supply reservoirs[J]. Med J Aust, 1983(1): 511.
[10]
Yu S Z. Drinking water and primary liver cancer[M]. Beijing: Academic Press, 1989.
[11]
徐立红 张甬元.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报,:.
[12]
Mazorra M T, Rubio J A, Blasco J. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: Kinetic characteristics and effects of heavy metals[J]. Comp Biochem Physiol B, 2002(131): 241-249.
[13]
Cajaraville M P, Bebianno M J, Blasco J, et al. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: A practical approach[J]. Sci Total Environ, 2000(247):295- 311.
[14]
Karuppasamy R. Effect of phenyl mercuric acetate(PMA) on acid and alkaline phosphatase activities in the selected tissue of fish[J]. Environ Ecol, 2000(18)z: 643-650.
[15]
Molina R, Moreno I, Pichardo S, et al. Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions[J]. Toxicon, 2005(46): 725-735.
[16]
Pietsch C, Wiegand C, Ame M V, et al. The effects of a cyanobacterial crude extract on different aquatic organisms: Evidence for cyanobacterial toxin modulating factors[J]. Environ Toxicol, 2001, 16(6):535-542.
[17]
Chen W, Song L R, Ou D Y, et al. Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microeystin-LR[J]. Environ Toxicol, 2005, 20(3):323-330.
[18]
Rosa C E, da Souza M S, de Yunes J S, et al. Cyanobacterial blooms in estuarine ecosystems: Characteristics and effects on Laeonereis acuta (Polychaeta, Nereididae) [J]. Mar Pollut Bull, 2005, 50(9):956-964.
[19]
Malbrouck C, Kestemont P. Effects of microcystins on fish[J]. Environ Toxicol Chem, 2006(25):72-86.
[20]
Fu J, Xie P. The acute effects of microcystin-LR on the transcription of nine glutathione S-transferase genes in common carp (Cyprinus carpio L)[J]. Aquat Toxicol, 2005,80(3): 261-266.
[21]
Li X Y, Liu Y D, Song L R, et al. Responses of antioxidant systems in thehepatocytesofcommoncarp (Cyprinus carpio L.) to the toxicity of microcystin-LR[J]. Toxicon, 2003(42):85-89.
[22]
Hilscnhoff W L. Rapid field assessment of organic pollution with a family-level biotic index[J]. J North Am Benthol Soc, 1988(73): 65-68.
[23]
Ghorpade N, Mehta V, Khare M, et al. Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala [J]. Ecotox Environ Saf, 2002 (53): 255-258.
[24]
Bhavan P S, Geraldine P. Profiles of acid and alkaline phosphatases in the prawn Macrobrachium malcolmsanii exposed to endosulfan[J]. Environ Biol, 2004(25): 213-219.
[25]
Pichardo S, Jos A, Zurita J L, et al. The use of the fish cell lines RTG-2 and PLHC-1 to compare the toxic effects produced by microcystins LR and RR[J]. Toxicol in Vitro, 2005, 19(7): 865-873.
[26]
Ding W, Ong C. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity[J]. FEMS Microbiol Lett, 2003, 220: 1-7.
[27]
Bouauiicha N, Maatouk I. Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes[J]. Toxicol Lett, 2004, 148 (1-2): 53-63.
[28]
Moreno I, Pichardo S, Jos A, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally[J]. Toxicon, 2005, 45 (4): 395-402.
[29]
Pflugmacher S, Wiegand C, Oberemm A L, et al. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication[J]. Biochim Biophys Acta, 1998, 1425: 527-533.
[30]
Cazenave J, Bistoni M A, Pesce S F, et al. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR[J]. Aquat Toxicol, 2006, 76 (1): 1-12.
[31]
Li X Y, Chung I K, Kim J I, et al. Oral exposure to Microcystis increases activity-augmented antioxidant enzymes in the liver of loach (Misgurnus mizolepis) and has no effect on lipid peroxidation[J]. Comp Biochem Physiol C: Toxicol Pharmacol, 2005, 141(3):292-296.
[32]
Fitzpatrick P J, O Halloran J, Sheehan D, et al. Assessment of a glutathione S-transferase and related proteins in the gill and digestive gland of Mytilus edulis(L.), as potential organic pollution biomarkers [J]. Biomarkers, 1997(2): 51-56.
Williams D E, Dawe S C, Kent M L, et al. Bioaceumulation and clearance of microcystins from salt water mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues [J]. Toxicon, 1997, 35: 1617-1625.
[38]
Ozawa K, Yokoyama A, Ishikawa K, et al. Accumulation and depuration of microcystins produced by the cyanobacterium Microcystis in a freshwater snail[J]. Limnol, 2003(4): 131- 138.