全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

污泥生物炭基堆肥对锰污染土壤性质及其修复的影响

DOI: 10.11654/jaes.2015.07.008

Keywords: 水热污泥 生物炭 堆肥 微生物 重金属有效性

Full-Text   Cite this paper   Add to My Lib

Abstract:

城镇化快速发展迫切要求对日益增加的城市污泥进行有效处理,为此尝试将其通过热解工艺制成生物炭,作为有机肥料添加剂来改善有机肥品质,通过考察污泥生物炭对猪粪堆肥的影响,并在锰污染土中施加肥料栽培白菜,重点探究500 ℃热解污泥生物炭肥料对土壤物理化学和微生物性质以及白菜产量的影响。结果表明,热解能增加污泥生物炭的比表面积和提高pH;生物炭的添加能加快堆肥速度,提高堆肥品质;生物炭肥料在盆栽过程中能有效改善土壤性质(如提高pH和电导率,增加细菌和真菌群落总数,使脱氢酶和脲酶活性增强,提高氨氧化古菌和氨氧化细菌的浓度),增加白菜产量,同时降低重金属锰的有效性,将部分酸溶态锰转化为残渣态

References

[1]  Kistler W F, Brunner P H. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge[J]. Environmental Science & Technology, 1987, 21(7):704-708.
[2]  Karayildirim T, Yanik J, Yuksel M, et al. Characterisation of products from pyrolysis of waste sludges[J]. Fuel, 2006, 85(10-11):1498-1508.
[3]  Agrafioti E, Bouras G, Kalderis D, et al. Biochar production by sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101:72-78.
[4]  Fonts I, Azuara M, Gea G, et al. Study of the pyrolysis liquids obtained from different sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1-2):184-191.
[5]  Gasco G, Blanco C G, Guerrero F, et al. The influence of organic matter on sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74:413-420.
[6]  Sanchez M E, Menendez J A, Dominguez A, et al. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge[J]. Biomass and Bioenergy, 2009, 33(6-7):933-940.
[7]  Mendez A, Gasco G. Optimization of water desalination using carbon-based adsorbents[J]. Desalination, 2005, 183(1-3):249-255.
[8]  Wang X J, Xu X M, Liang X, et al. Adsorption of copper(Ⅱ) onto sewage sludge-derived materials via microwave irradiation[J]. Journal of Hazardous Materials, 2011, 192(3):1226-1233.
[9]  Khan S, Chao C, Waqas M, et al. Sewage sludge biochar influence upon rice(Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science & Technology, 2013, 47(15):8624-8632.
[10]  Andrey B, Teresa J, David C L. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludgederived fertilizer[J]. Carbon, 2001, 39(13):1971-1979.
[11]  Rio S, Faur-brasquet C, Le L, et al. Structure characterization and adsorption properties of pyrolyzed sewage sludge[J]. Environmental Science & Technology, 2005, 39(11):4249-4257.
[12]  Petric I, Sestan A, Ssetan I. Influence of wheat straw addition on composting of poultry manure[J]. Process Safety and Environmental Protection, 2009, 87(3):206-212.
[13]  Dias B O, Silva C A, Higashikawa F S, et al. Use of biochar as bulking agent for the composting of poultry manure:Effect on organic matter degradation and humification[J]. Bioresource Technology, 2010, 101(4):1239-1246.
[14]  张 翔, 张耿崚, 汪 印, 等. 蘑菇培养土生物炭堆肥化利用及其对水稻生长的影响[J]. 农业环境科学学报, 2014, 33(10):2036-2041. ZHANG Xiang, ZHANG Ken-lin, WANG Yin. Influence of biochar from spent mushroom substrate on properties of pig manure compost and rice growth[J]. Journal of Agro-environment Science, 2014, 33(10):2036-2041.
[15]  Jindo K, Sanchez-monedero M A, Hernadez T, et al. Biochar influences the microbial community structure during manure composting with agricultural wastes[J]. The Science of the Total Environment, 2012, 416(1):476-481.
[16]  Lindasay W L, Norvell W A. Development of a DTPA soil test for zinc, iron, manganese, and copper[J]. Soil Science Society of America Journal, 1978, 42(3):421-428.
[17]  Casida D A, Santoro T. Soil dehydrogenase activity[J]. Soil Science Society of America Journal, 1964, 98(6):371-376.
[18]  Singh J, Singh D K. Dehydrogenase and phosphomonoesterase activities in groundnut(Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments[J]. Chemosphere, 2005, 60(1):32-42.
[19]  Ohlinger R, Kandeler E, Margesin R. Methods in soil biology[M]. New York:Springer-Verlag, 1996:301-304.
[20]  Shinogi Y, Yoshida H, Koizumi T, et al. Basic characteristics of low-temperature carbon products from waste sludge[J]. Advances in Environmental Research, 2003, 7(3):661-665.
[21]  Bagreev J. Efficient hydrogen sulfide adsorbents obtained by pyrolysis of sewage sludge derived fertilizer modified with spent mineral oil[J]. Environmental Science & Technology, 2004, 38(1):345-351.
[22]  Lou R, Wu S, LV G, et al. Energy and resource utilization of deinking sludge pyrolysis[J]. Applied Energy, 2012, 90(1):46-50.
[23]  Gaskin J W, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the ASABE, 2008, 51(6):2061-2069.
[24]  Huang G F, Wong J W, Wu Q T, et al. Effect of C/N on composting of pig manure with sawdust[J]. Waste Management, 2004, 24(8):805-813.
[25]  Hirai M F, Chanyasak V, Kubota H. A standard measurement for compost maturity[J]. Biocycle, 1983, 24(6):54-56.
[26]  Zucconi F, Fortw M, Monac A, et al. Evaluating toxicity of immature compost[J]. Biocycle, 1981, 22(2):54-57.
[27]  Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1):84-91.
[28]  Vattanian M, Henry M. Manganese cations increase the mutation rate of human immune deficiency virus type 1 ex vivo[J]. Journal of General Virology, 1999, 80(8):1983-1986.
[29]  Tong Y, Rengel Z, Graham R D. Effects of temperature on extractable manganese and distribution of manganese among soil fractions[J]. Communications in Soil Science and Plant Analysis, 1995, 26(11-12):1963-1977.
[30]  Pittman J K. Managing the manganese:Molecular mechanisms of manganese transport and homeostasis[J]. New Phytologist, 2005, 167(3):733-742.
[31]  Uren N C. Chemical-reduction of an insoluble higher oxide of manganese by plant-roots[J]. Journal of Plant Nutrition, 1981, 4(1):65-71.
[32]  Hebbern C A, Pedas P, Schjoerring J K, et al. Genotypic differences in manganese efficiency:Field experiments with winter barley(Hordeum vulgare L.)[J]. Plant and Soil, 2005, 272(1-2):233-244.
[33]  Thompson I A, Huber D M, Guest C A, et al. Fungal manganese oxidation in a reduced soil[J]. Environmental Microbiology, 2005, 7(9):1480-1487.
[34]  Graham R D, Hannam R J, Uren, N C. Manganese in soils and plants[M]. Dordrecht:Kluwer Academic Publishers, 1988:101-106.
[35]  Delaune R D, Reddy K R. Encyclopedia of soils in the environment[M]. Amsterdam:Elsevier Ltd, 2005:234-235.
[36]  Zheng R L, Cai C, Liang J H, et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice(Oryza sativa L.) seedlings[J]. Chemosphere, 2012, 89(7):856-862.
[37]  Kolodynska D, Wnetrzak R, Leahy J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197:295-305.
[38]  Harvey O R, Herbert B E, Rhue R D, et al. Metal interactions at the biochar-water interface:Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology, 2011, 45(13):5550-5556.
[39]  Uchimiya M, Bannon D I, Wartelle L H. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil[J]. Journal of Agricultural and Food Chemistry, 2012, 60(7):1798-1809.
[40]  Jiang J, Xu R K. Application of crop straw derived biochars to Cu(Ⅱ)contaminated Ultisol:Evaluating role of alkali and organic functional groups in Cu(Ⅱ) immobilization[J]. Bioresource Technology, 2013, 133:537-545.
[41]  马晓霞, 王莲莲, 黎青慧, 等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J]. 生态学报, 2012, 32(17):5505-5511. MA Xiao-xia, WANG Lian-lian, LI Qing-hui, et al. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season[J]. Acta Ecologica Sinica, 2012, 32(17):5505-5511.
[42]  贾 伟, 周怀平, 解文艳, 等. 长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响[J]. 植物营养与肥料学报, 2008, 14(4):700-705. JIA Wei, ZHOU Huai-ping, XIE Wen-yan, et al. Effects of long-term in organic fertilizer combined with organic manure on microbial biomass C, N and enzyme activity in cinnamon soil[J]. Plant Nutrition and Fertilizer Science, 2008, 14(4):700-705.
[43]  Liu E K, Zhao B Q, Mei X R, et al. Effects of no-tillage management on soil biochemical characteristics in Northern China[J]. Journal of Agricultural Science, 2010, 148(2):217-223.
[44]  Pignataro M C, Mocali S. Assessment of soil microbial functional diversity in a coppiced forest system[J]. Applied Soil Ecology, 2012, 62:115-123.
[45]  韩光明, 孟 军, 曹 婷, 等. 生物炭对菠菜根际微生物及土壤理化性质的影响[J]. 沈阳农业大学学报, 2012, 43(5):515-520. HAN Guang-ming, MENG Jun, CAO Ting, et al. Effect of biochar on microorganisms quantities and soil physicochemical property in rhizosphere of spinach[J]. Journal of Shenyang Agricultural University, 2012, 43(5):515-520.
[46]  Chendrayan K, Adhya T K, Sethunathan N. Dehydrogenase and invertase activities of flooded soils[J]. Soil Biology & Biochemistry, 1980, 12(3):271-273.
[47]  Czimczik C I, Masiello C A. Controls on black carbon storage in soils[J]. Global Biogeochemical Cycles, 2007, 21(3):GB3005.
[48]  Luo J F, Lin W T. Research progress of ammonia-oxidizing archaea[J]. Journal of South China University of Technology, 2013, 41(12):107-114.
[49]  Mcbride M B. Toxic metals in sewage sludge-amended soils:Has promotion of beneficial use discounted the risks?[J]. Advances in Environmental Research, 2003, 8(1):5-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133