Zhang F, Wu X, Chen Y, et al. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish[J]. Fibers and Polymers, 2009, 10(4):496-501.
[2]
Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing[J]. Carbohydrate Polymers, 2008, 72(1):43-51.
[3]
Mueller N C, Nowack B. Exposure modeling of engineered nanoparticles in the environment[J]. Environmental Science & Technology, 2008, 42(12):4447-4453.
[4]
Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials(TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24):9216-9222.
[5]
Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science & Technology, 2008, 42(12):4583-4588.
[6]
Hwang E T, Lee J H, Chae Y J, et al. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria[J]. Small, 2008, 4(6):746-750.
[7]
Bottero J Y, Auffan M, Rose J, et al. Manufactured metal and metal-oxide nanoparticles:Properties and perturbing mechanisms of their biological activity in ecosystems[J]. Comptes Rendus Geoscience, 2011, 343(2):168-176.
[8]
Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonasreinhardtii[J]. Environmental Science & Technology, 2008, 42(23):8959-8964.
[9]
Yin L, Cheng Y, Espinasse B, et al. More than the ions:The effects of silver nanoparticles on Loliummultiflorum[J]. Environmental Science & Technology, 2011, 45(6):2360-2367.
[10]
Unrine J M, Shoults-Wilson W A, Zhurbich O, et al. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain[J]. Environmental Science & Technology, 2012, 46(17):9753-9760.
[11]
Benn T M, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics[J]. Environmental Science & Technology, 2008, 42(11):4133-4139.
[12]
Sagee O, Dror I, Berkowitz B. Transport of silver nanoparticles(AgNPs)in soil[J]. Chemosphere, 2012, 88(5):670-675.
[13]
Liang Y, Bradford S A, Simunek J, et al. Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors[J]. Water Research, 2013, 47(7):2572-2582.
[14]
Wang D, Su C, Zhang W, et al. Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil(Ultisol)[J]. Journal of Hydrology, 2014, 519:1677-1687.
[15]
Sagee O, Dror I, Berkowitz B. Transport of silver nanoparticles(AgNPs)in soil[J]. Chemosphere, 2012, 88(5):670-675.
[16]
Shoults-Wilson W A, Reinsch B C, Tsyusko O V, et al. Role of particle size and soil type in toxicity of silver nanoparticles to earthworms[J]. Soil Science Society of America Journal, 2011, 75(2):365-377.
[17]
Khan Sudheer S, Mukherjee A, Chandrasekaran N. Interaction of colloidal silver nanoparticles(SNPs) with exopolysaccharides(EPS) and its adsorption isotherms and kinetics[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 381(1):99-105.
[18]
Abraham P M, Barnikol S, Baumann T, et al. Sorption of silver nanoparticles to environmental and model surfaces[J]. Environmental Science & Technology, 2013, 47(10):5083-5091.
[19]
陈怀满, 郑春荣, 陈英旭, 等。 土壤-植物系统中的重金属污染[M]. 北京:科学出版社, 1996. CHEN Huai-man, ZHENG Chun-rong, CHEN Ying-xu, et al. Heavy metal pollution in the soil-plant system[M]. Beijing:Science Press, 1996.
[20]
VandeVoort A R, Arai Y. Effect of silver nanoparticles on soil denitrification kinetics[J]. Industrial Biotechnology, 2012, 8(6):358-364.
[21]
Bae S, Hwang Y S, Lee Y J, et al. Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles[J]. Environmental Health and Toxicology, 2013, 28:1-7.
[22]
Hoppe M, Mikutta R, Utermann J, et al. Retention of sterically and electrosterically stabilized silver nanoparticles in soils[J]. Environmental Science & Technology, 2014, 48(21):12628-12635.
[23]
El Badawy A M, Scheckel K G, Suidan M, et al. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles[J]. Science of the Total Environment, 2012, 429:325-331.
[24]
Shin H S, Yang H J, Kim S B, et al. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution[J]. Journal of Colloid and Interface Science, 2004, 274(1):89-94.
[25]
Badawy A M E, Luxton T P, Silva R G, et al. Impact of environmental conditions(pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions[J]. Environmental Science & Technology, 2010, 44(4):1260-1266.
[26]
Khan Sudheer S, Mukherjee A, Chandrasekaran N. Interaction of colloidal silver nanoparticles(SNPs) with exopolysaccharides(EPS) and its adsorption isotherms and kinetics[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 381(1):99-105.
[27]
Stankus D P, Lohse S E, Hutchison J E, et al. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents[J]. Environmental Science & Technology, 2010, 45(8):3238-3244.
[28]
Baalousha M, Manciulea A, Cumberland S, et al. Aggregation and surface properties of iron oxide nanoparticles:Influence of pH and natural organic matter[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1875-1882.
[29]
Haghseresht F, Lu G Q. Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents[J]. Energy & Fuels, 1998, 12(6):1100-1107.
[30]
El Qada E N, Allen S J, Walker G M. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal:A study of equilibrium adsorption isotherm[J]. Chemical Engineering Journal, 2006, 124(1):103-110.
[31]
汪登俊。 生物炭胶体和几种人工纳米粒子在饱和多孔介质中的迁移和滞留规律研究[D]. 南京:中国科学院南京土壤研究所, 2014. WANG Deng-jun, Transport and retention of biochar colloids and several engineered nanoparticles in saturated porous media[D]. Nanjing:Institute of Soil Science, 2014.
[32]
Ducker W A, Senden T J, Pashley R M. Direct measurement of colloidal forces using an atomic force microscope[J]. Nature, 1991, 353(6341):239-241.
[33]
Huynh K A, Chen K L. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions[J]. Environmental Science & Technology, 2011, 45(13):5564-5571.
[34]
Li X, Lenhart J J, Walker H W. Dissolution-accompanied aggregation kinetics of silver nanoparticles[J]. Langmuir, 2010, 26(22):16690-16698.
[35]
Piccapietra F, Sigg L, Behra R. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater[J]. Environmental Science & Technology, 2011, 46(2):818-825.
[36]
Wang D, Ge L, He J, et al. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol[J]. Journal of Contaminant Hydrology, 2014, 164:35-48.
[37]
Liu H S, Wang Y C, Chen W Y. The sorption of lysozyme and ribonuclease onto ferromagnetic nickel powder:1. Adsorption of single components[J]. Colloids and Surfaces B:Biointerfaces, 1995, 5(1):25-34.