全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同磷浓度对钝顶螺旋藻吸附、吸收和转化砷酸盐的影响

DOI: 10.11654/jaes.2015.06.003

Keywords: 螺旋藻 磷 砷 吸附 吸收 转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用室内培养实验, 首先用0~300 μg·L-1砷酸盐[As(Ⅴ)]处理钝顶螺旋藻(Spirulina platensis),分析了螺旋藻对As(Ⅴ)的吸附和吸收特性, 并在300 μg·L-1 As(Ⅴ)处理下, 研究了不同磷浓度(P正、1/10 P正、1/25 P正、1/50 P正)对螺旋藻吸附、吸收和转化As(Ⅴ)的影响。结果表明, 在本研究As(Ⅴ)处理范围内, 螺旋藻的干重与对照没有显着差异。随着As(Ⅴ)浓度的升高, 藻体富集的总砷含量增加, 当As(Ⅴ)处理浓度为150~300 μg·L-1时砷富集量为1.006~1.569 mg·kg-1,超过了国家保健(功能)食品的砷污染限量1.0 mg·kg-1(GB 16740-1997).随着培养基中磷浓度的降低, 螺旋藻体内吸收的砷含量呈现增多趋势。在正常磷(P正)和1/10 P正条件下, 螺旋藻体内的砷均为As(Ⅴ);当磷浓度降低至1/25 P正时, 藻细胞中的砷有3.28%为As(Ⅲ);当磷浓度降低为1/50 P正时, 螺旋藻吸收的砷增加至1.457 mg·kg-1,其中有9.24%和37.35%分别转化为As(Ⅲ)和二甲基砷(DMA),表明降低培养基中磷浓度促进了螺旋藻体对As(Ⅴ)的吸收、还原和甲基化, 但藻细胞中砷的主要形态仍为As(Ⅴ).在正常磷浓度培养下, 藻体富集的砷以藻细胞表面吸附为主, 通过磷酸盐缓冲液脱附可去除95%以上螺旋藻富集的砷

References

[1]  胡海燕, 张静, 徐晶, 等。 螺旋藻培养液中碳、氮、磷的优化及其效应评价[J]. 食品科技, 2012, 37(1):29-33. HU Hai-yan, ZHANG Jing, XU Jing, et al. Optimization of carbon, nitrogen and phosphorus in Spirulina culture medium and its effect[J]. Food Science and Technology, 2012, 37(1):29-33.
[2]  许文涛, 王颖, 罗云波, 等。 Cr(Ⅲ)在钝顶螺旋藻中的生物富集及其对钝顶螺旋藻生长的影响[J]. 食品科学, 2009, 30(5):153-157. XU Wen-tao, WANG Ying, LUO Yun-bo, et al. Bioaccumulation of Cr(Ⅲ) in Spirulina platensis an its effects on cultivation of Spirulina platensis[J]. Food Science, 2009, 30(5):153-157.
[3]  胡鸿钧。 螺旋藻生物学及生物技术原理[M]. 北京:科学出版社, 2003. HU Hong-jun. Spirulina biology and biotechnology principle[M]. Beijing:Science Press, 2003.
[4]  食药监办。 关于查处康爱斯螺旋藻片等假冒保健食品的通知[EB/OL]. [2012-03-30]. Http://www. sda. gov. cn/WS01/CL0847/70399. html.
[5]  Richmond A, Hu Q. Handbook of microalgal culture:Applied phycology and biotechnology[M]. John Wiley and Sons, 2013: 495.
[6]  Morais M G, Radmann E M, Andrade M R, et al. Pilot scale semicontinuous production of Spirulina biomass in Southern Brazil[J]. Aquaculture, 2009, 294(1):60-64.
[7]  Oremland R S, Stolz J F. The ecology of arsenic[J]. Science, 2003, 300(5621):939-944.
[8]  Abernathy C O, Liu Y P, Longfellow D, et al. Arsenic:Health effects, mechanisms of actions, and research issues[J]. Environmental Health Perspectives, 1999, 107(7):593-597.
[9]  李妍丽, 柯林。 As(Ⅲ)和As(Ⅴ)对小球藻(Chlorella sp.)的生长影响研究[J]. 环境科学与技术, 2012, 35(12):61-70. LI Yan-li, KE Lin. Toxicity of arsenic species on growth of green microalgae Chlorella sp.[J]. Environmental Science and Technology, 2012, 35(12):61-70.
[10]  Levy J L, Stauber J L, Adams M S, et al. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae(Chlorella sp. and Monoraphidium arcuatum)[J]. Environmental Toxicology and Chemistry, 2005, 24(10):2630-2639.
[11]  王志忠, 刘果厚, 巩东辉, 等。 鄂尔多斯碱湖钝顶螺旋藻粉砷的来源追踪[J]. 中国农学通报, 2012, 28(11):108-111. WANG Zhi-zhong, LIU Guo-hou, GONG Dong-hui, et al. Tracking sources of arsenic in the Spirulina platensis power from the Orados Alkali Lake in Inner Mongolia[J]. Chinese Agricultural Science Bulletin, 2012, 28(11):108-111.
[12]  张兵, 王利红, 徐玉新, 等。 集胞藻(Synechocystis sp. PCC6803)对砷吸收转化特性的初步研究[J]. 生态毒理学报, 2011, 6(6):629-663. ZHANG Bing, WANG Li-hong, XU Yu-xin, et al. Study on absorption and transformation of arsenic in blue alga(Synechocystis sp. PCC6803)[J]. Asian Journal of Ecotoxicology, 2011, 6(6):629-663.
[13]  Qin J, Rosen B P, Zhang Y, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7):2075-2080.
[14]  Knauer K, Behra R, Hemond H. Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient[J]. Aquatic Toxicology, 1999, 46(3):221-230.
[15]  李宝洁。 不同磷浓度下砷对小球藻Chlorella vulgaris 的生物效应[D]. 青岛:中国海洋大学, 2012. LI Bao-jie. Biological effects of arsenic on Chlorella vulgaris mediated by different concentrations of phosphorus[D]. Qingdao:Ocean University of China, 2012.
[16]  Wang N X, Huang B, Xu S, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2014, 157:167-174.
[17]  王亚, 张春华, 申连玉, 等。 高效液相色谱/氢化物发生-原子荧光光谱法检测微藻中的砷形态[J]. 分析科学学报, 2014, 1(30):21-25. WANG Ya, ZHANG Chun-hua, SHEN Lian-yu, et al. Detection of arsenic species in microalga using High Performance Liquid Chromatography/Hydride Generation-Atomic Fluorescence Spectrometry[J]. Journal of Analytical Science, 2014, 1(30):21-25.
[18]  陈辉, 闻捷, 李春野, 等。 干法消化-原子荧光光谱法同时测定螺旋藻粉中砷和铋[J]. 中国卫生检验杂志, 2013(12):2583-2585. CHEN Hui, WEN Jie, LI Chun-ye, et al. Simultaneous determination of arsenic and bismuth in Spirulina powder using dry digestion- Atomic Fluorescence Spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2013(12):2583-2585.
[19]  Doshi H, Ray A, Kothari I L. Live and dead Spirulina sp. to remove arsenic(Ⅴ) from water[J]. International Journal of Phytoremediation, 2009, 11(1):53-64.
[20]  Zarrouk C. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima[J]. University of Paris, France, 1966.
[21]  王亚, 张春华, 王淑, 等。 带菌盐藻对不同形态砷的富集和转化研究[J]. 环境科学, 2013, 34(11):4257-4265. WANG Ya, ZHANG Chun-hua, WANG Shu, et al. Accumulation and transformation of different arsenic species in nonaxenic Dunaliella salina[J]. Environmental Science, 2013, 34(11):4257-4265.
[22]  Shi G L, Lou L Q, Zhang S, et al. Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China[J]. Environmental Science and Pollution Research, 2013, 20(12):8435-8445.
[23]  国家技术监督局。 GB 16740-1997 保健(功能)食品通用标准[S]. 1997. General Administration of Quality Supervision, Inspection and Quarantine of the People\'s Republic of China. GB 16740-1997 General standard for health(functional) foods[S]. 1997.
[24]  王静。 铜绿微囊藻中砷的代谢与生物效应[D]. 天津:天津大学, 2012. WANG Jing. Metabolism and biological effects of arsenic in Microcystis aeruginosa[D]. Tianjin:Tianjin University, 2012.
[25]  张思宇, 孙国新, 贾炎。 海洋真核微藻 Ostreococcus tauri 对砷的解毒机制研究[J]. 环境科学学报, 2013, 33(10):2879-2884. ZHANG Si-yu, SUN Guo-xin, JIA Yan. Arsenic detoxification mechanism in marine eukaryotic microalgae Ostreococcus tauri[J]. Acta Scientiae Circumstantiae, 2013, 33(10):2879-2884.
[26]  王志忠, 刘果厚, 巩东辉, 等。 不同来源钝顶螺旋藻砷富集特性[J]. 科技导报, 2014, 32(32):37-40. WANG Zhi-zhong, LIU Guo-hou, GONG Dong-hui, et al. Characterization of arsenic concentration in Spirulina platensis from different sources[J]. Science and Technology Review, 2014, 32(32):37-40.
[27]  田丹, 赵文, 魏杰, 等。 蛋白核小球藻对铅、镉和汞吸附速率及其影响因素的研究[J]. 农业环境科学学报, 2011, 30(12):2548-2553. TIAN Dan, ZHAO Wen, WEI Jie, et al. Biosorption rate and influence factors of Pb2+, Cd2+ and Hg2+ by Chlorella pyrenoidosa[J]. Journal of Agro-Environment Science, 2011, 30(12):2548-2553.
[28]  黄宏霞。 钝顶螺旋藻对Cu2+和Cd2+吸附特性的研究[D]. 武汉:华中农业大学, 2006. HUANG Hong-xia. Adsorption characterization of Cu2+ and Cd2+ by Spirulina platensis[D]. Wuhan:Huazhong Agricultural University, 2006.
[29]  Duncan E G, Maher W A, Foster S D, et al. The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta[J]. Marine Chemistry, 2013, 157:78-85.
[30]  Zhang S, Rensing C, Zhu Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments[J]. Environmental Science and Technology, 2014, 48(2):994-1000.
[31]  Hellweger F L, Farley K J, Lall U, et al. Greedy algae reduce arsenate[J]. Limnology Oceanography, 2003, 48(6):2275-2288.
[32]  Qin J, Lehr C R, Yuan C, et al. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga[J]. Proceedings of the National Academy of Sciences, 2009, 106(13):5213-5217.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133