胡海燕, 张静, 徐晶, 等。 螺旋藻培养液中碳、氮、磷的优化及其效应评价[J]. 食品科技, 2012, 37(1):29-33. HU Hai-yan, ZHANG Jing, XU Jing, et al. Optimization of carbon, nitrogen and phosphorus in Spirulina culture medium and its effect[J]. Food Science and Technology, 2012, 37(1):29-33.
[2]
许文涛, 王颖, 罗云波, 等。 Cr(Ⅲ)在钝顶螺旋藻中的生物富集及其对钝顶螺旋藻生长的影响[J]. 食品科学, 2009, 30(5):153-157. XU Wen-tao, WANG Ying, LUO Yun-bo, et al. Bioaccumulation of Cr(Ⅲ) in Spirulina platensis an its effects on cultivation of Spirulina platensis[J]. Food Science, 2009, 30(5):153-157.
[3]
胡鸿钧。 螺旋藻生物学及生物技术原理[M]. 北京:科学出版社, 2003. HU Hong-jun. Spirulina biology and biotechnology principle[M]. Beijing:Science Press, 2003.
Richmond A, Hu Q. Handbook of microalgal culture:Applied phycology and biotechnology[M]. John Wiley and Sons, 2013: 495.
[6]
Morais M G, Radmann E M, Andrade M R, et al. Pilot scale semicontinuous production of Spirulina biomass in Southern Brazil[J]. Aquaculture, 2009, 294(1):60-64.
[7]
Oremland R S, Stolz J F. The ecology of arsenic[J]. Science, 2003, 300(5621):939-944.
[8]
Abernathy C O, Liu Y P, Longfellow D, et al. Arsenic:Health effects, mechanisms of actions, and research issues[J]. Environmental Health Perspectives, 1999, 107(7):593-597.
[9]
李妍丽, 柯林。 As(Ⅲ)和As(Ⅴ)对小球藻(Chlorella sp.)的生长影响研究[J]. 环境科学与技术, 2012, 35(12):61-70. LI Yan-li, KE Lin. Toxicity of arsenic species on growth of green microalgae Chlorella sp.[J]. Environmental Science and Technology, 2012, 35(12):61-70.
[10]
Levy J L, Stauber J L, Adams M S, et al. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae(Chlorella sp. and Monoraphidium arcuatum)[J]. Environmental Toxicology and Chemistry, 2005, 24(10):2630-2639.
[11]
王志忠, 刘果厚, 巩东辉, 等。 鄂尔多斯碱湖钝顶螺旋藻粉砷的来源追踪[J]. 中国农学通报, 2012, 28(11):108-111. WANG Zhi-zhong, LIU Guo-hou, GONG Dong-hui, et al. Tracking sources of arsenic in the Spirulina platensis power from the Orados Alkali Lake in Inner Mongolia[J]. Chinese Agricultural Science Bulletin, 2012, 28(11):108-111.
[12]
张兵, 王利红, 徐玉新, 等。 集胞藻(Synechocystis sp. PCC6803)对砷吸收转化特性的初步研究[J]. 生态毒理学报, 2011, 6(6):629-663. ZHANG Bing, WANG Li-hong, XU Yu-xin, et al. Study on absorption and transformation of arsenic in blue alga(Synechocystis sp. PCC6803)[J]. Asian Journal of Ecotoxicology, 2011, 6(6):629-663.
[13]
Qin J, Rosen B P, Zhang Y, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7):2075-2080.
[14]
Knauer K, Behra R, Hemond H. Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient[J]. Aquatic Toxicology, 1999, 46(3):221-230.
[15]
李宝洁。 不同磷浓度下砷对小球藻Chlorella vulgaris 的生物效应[D]. 青岛:中国海洋大学, 2012. LI Bao-jie. Biological effects of arsenic on Chlorella vulgaris mediated by different concentrations of phosphorus[D]. Qingdao:Ocean University of China, 2012.
[16]
Wang N X, Huang B, Xu S, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2014, 157:167-174.
[17]
王亚, 张春华, 申连玉, 等。 高效液相色谱/氢化物发生-原子荧光光谱法检测微藻中的砷形态[J]. 分析科学学报, 2014, 1(30):21-25. WANG Ya, ZHANG Chun-hua, SHEN Lian-yu, et al. Detection of arsenic species in microalga using High Performance Liquid Chromatography/Hydride Generation-Atomic Fluorescence Spectrometry[J]. Journal of Analytical Science, 2014, 1(30):21-25.
[18]
陈辉, 闻捷, 李春野, 等。 干法消化-原子荧光光谱法同时测定螺旋藻粉中砷和铋[J]. 中国卫生检验杂志, 2013(12):2583-2585. CHEN Hui, WEN Jie, LI Chun-ye, et al. Simultaneous determination of arsenic and bismuth in Spirulina powder using dry digestion- Atomic Fluorescence Spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2013(12):2583-2585.
[19]
Doshi H, Ray A, Kothari I L. Live and dead Spirulina sp. to remove arsenic(Ⅴ) from water[J]. International Journal of Phytoremediation, 2009, 11(1):53-64.
[20]
Zarrouk C. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima[J]. University of Paris, France, 1966.
[21]
王亚, 张春华, 王淑, 等。 带菌盐藻对不同形态砷的富集和转化研究[J]. 环境科学, 2013, 34(11):4257-4265. WANG Ya, ZHANG Chun-hua, WANG Shu, et al. Accumulation and transformation of different arsenic species in nonaxenic Dunaliella salina[J]. Environmental Science, 2013, 34(11):4257-4265.
[22]
Shi G L, Lou L Q, Zhang S, et al. Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China[J]. Environmental Science and Pollution Research, 2013, 20(12):8435-8445.
[23]
国家技术监督局。 GB 16740-1997 保健(功能)食品通用标准[S]. 1997. General Administration of Quality Supervision, Inspection and Quarantine of the People\'s Republic of China. GB 16740-1997 General standard for health(functional) foods[S]. 1997.
[24]
王静。 铜绿微囊藻中砷的代谢与生物效应[D]. 天津:天津大学, 2012. WANG Jing. Metabolism and biological effects of arsenic in Microcystis aeruginosa[D]. Tianjin:Tianjin University, 2012.
[25]
张思宇, 孙国新, 贾炎。 海洋真核微藻 Ostreococcus tauri 对砷的解毒机制研究[J]. 环境科学学报, 2013, 33(10):2879-2884. ZHANG Si-yu, SUN Guo-xin, JIA Yan. Arsenic detoxification mechanism in marine eukaryotic microalgae Ostreococcus tauri[J]. Acta Scientiae Circumstantiae, 2013, 33(10):2879-2884.
[26]
王志忠, 刘果厚, 巩东辉, 等。 不同来源钝顶螺旋藻砷富集特性[J]. 科技导报, 2014, 32(32):37-40. WANG Zhi-zhong, LIU Guo-hou, GONG Dong-hui, et al. Characterization of arsenic concentration in Spirulina platensis from different sources[J]. Science and Technology Review, 2014, 32(32):37-40.
[27]
田丹, 赵文, 魏杰, 等。 蛋白核小球藻对铅、镉和汞吸附速率及其影响因素的研究[J]. 农业环境科学学报, 2011, 30(12):2548-2553. TIAN Dan, ZHAO Wen, WEI Jie, et al. Biosorption rate and influence factors of Pb2+, Cd2+ and Hg2+ by Chlorella pyrenoidosa[J]. Journal of Agro-Environment Science, 2011, 30(12):2548-2553.
[28]
黄宏霞。 钝顶螺旋藻对Cu2+和Cd2+吸附特性的研究[D]. 武汉:华中农业大学, 2006. HUANG Hong-xia. Adsorption characterization of Cu2+ and Cd2+ by Spirulina platensis[D]. Wuhan:Huazhong Agricultural University, 2006.
[29]
Duncan E G, Maher W A, Foster S D, et al. The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta[J]. Marine Chemistry, 2013, 157:78-85.
[30]
Zhang S, Rensing C, Zhu Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments[J]. Environmental Science and Technology, 2014, 48(2):994-1000.
[31]
Hellweger F L, Farley K J, Lall U, et al. Greedy algae reduce arsenate[J]. Limnology Oceanography, 2003, 48(6):2275-2288.
[32]
Qin J, Lehr C R, Yuan C, et al. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga[J]. Proceedings of the National Academy of Sciences, 2009, 106(13):5213-5217.