全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

淹水培养时间对水稻土中Fe(Ⅲ)异化还原能力的影响

Keywords: 异化Fe(Ⅲ)还原,淹水培养时间,碳源利用

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了模拟水稻土淹水过程,探讨不同淹水培养时间水稻土中铁还原微生物群落利用不同碳源的活性变化特征,以接种不同淹水时期的浙江水稻土浸提液作为微生物群落来源,以人工合成的Fe(OH)3为惟一的电子受体,不同碳源作为惟一电子供体,在30℃恒温条件下厌氧培养,定期测定Fe(Ⅱ)含量和pH值变化,采用Logistic模型进行动力学分析。研究结果表明,葡萄糖作为电子供体时,不同淹水时期的微生物群落总体上对Fe(OH)3还原反应有较快的响应;丙酮酸盐作为碳源时,铁还原反应启动的时间整体迟于葡萄糖,Fe(Ⅱ)累积量在反应30d才表现出显著累积并逐渐趋于稳定;淹水20d的微生物群落能最先利用乳酸盐还原Fe(Ⅲ),反应15d的Fe(Ⅱ)累积量达到601.60mg·L-1;淹水30d的铁还原微生物群落对乙酸盐的利用能力增强,最大Fe(Ⅱ)累计量升高到538.47mg·L-1,Fe(Ⅲ)还原率达到75.81%。不同淹水时期利用各种碳源的体系pH表现为葡萄糖从中性下降至酸性,丙酮酸盐和乳酸盐中性偏酸,乙酸盐的pH略微偏碱,不同淹水时期出现的水稻土微生物群落结构不同是导致Fe(OH)3还原能力不同的主要原因。不同的碳源利用可以指示不同的铁还原微生物群落变化:淹水培养早期的铁

References

[1]  Liesack W,Schnell S,Revsbech N P,Microbiology of flooded rice pad-dies,FEMS Microbiology Reviews,2000.
[2]  Weber K A,Achenbach L A,Coates J D,Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction,Nature,2006.
[3]  Sorensen J,Reduction of ferric iron in anaerobic,marine sediment and interaction with reduction of nitrate and sulfate,Applied and Environmental Microbiology,1982(2).
[4]  Lovley D R,Organic matter mineralization with the reduction of ferric iron:A review,Geomirobiology Journal,1987(3/4).
[5]  Lin B,Braster M,Breukelen B M v,Geobaeteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill,Applied and Environmental Microbiology,2005(10).
[6]  Dassonvillea F,Godon J J,Renault P,Microbial dynamics in an anaerobic soil slurry amended with glucose,and their dependence on geo-chemical processes,Soil Biology and Biochemistry,2004.
[7]  Noll M,Matthies D,Frenzel P,Succession of bacterial community structure and diversity in a paddy soil oxygen gradient,Environmental Microbiology,2005(3).
[8]  He J,Qu D,Dissimilatory Ke(Ⅲ) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids,Journal of Environmental Sciences,2008(9).
[9]  Fernandez A,Huang S,Seston S,How stable Is stable? Function versus community composition,Applied and Environmental Microbiology,1999(8).
[10]  Cornell R M,Schwertmann U,The iron oxides:Structures,properties,reactions,occurrences and uses,Weinheim:Wiley-VCH,2003.
[11]  曲东,谭中欣,王保莉,贺江舟,外源物质对水稻土铁还原的影响,西北农林科技大学学报(自然科学版),2003(4).
[12]  Brune A,Frenzel P,Cypionka H,Life at the oxic-anoxic interface:Microbial activities and adaptations,FEMS Microbiology Reviews,2000.
[13]  Dang H,Lovell C R,Bacterial primary colonization and early succession on surface in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes,Applied and Environmental Microbiology,2000(2).
[14]  Kristufek V,Klhottova D,Chronakova A,Growth strategy of het-erotrophic bacterial population along successional sequence on spoil of brown coal colliery substrate,Folia Microbiological Reviews,2005.
[15]  Sigler W V,Zeyer J,Colony-forming analysis of bacterial community succession in deglaciated soils indicates pioneer stress-tolerant opportunists,Microbial Ecology,2004(3).
[16]  Lüdemann H,Arth I,Liesack W,Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores,Applied and Environmental Microbiology,2000(2).
[17]  曲东,张一平,S.Schnell,R.Conrad,添加氧化铁对水稻土中H2、CO2和CH4形成的影响,应用生态学报,2003(8).
[18]  Scheid D,Stubner S,Conrad R,Identification of rice root associated nitrate,sulfate and ferric iron reducing bacteria during root decomposi-tion,FEMS Microbiology Ecology,2004.
[19]  林江辉,李辉信,胡锋,赵海燕,干土效应对土壤生物组成及矿化与硝化作用的影响,土壤学报,2004(6).
[20]  王静,曲东,易维洁,不同浓度硫酸盐对水稻土中异化铁还原过程的影响,农业环境科学学报,2009(5).
[21]  Shrestha P M,Noll M,Liesack W,Phylogenetic identity,growth-response time and rRNA operon copy number of soil bacteria indicate different stages of community succession,Environmental Microbiology,2007(10).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133