全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

畜禽粪便中残留四环素类抗生素和重金属的污染特征及其控制

DOI: 10.11654/jaes.2013.09.002, PP. 1705-1719

Keywords: 畜禽粪便,四环素类抗生素,重金属,复合污染,堆肥,厌氧消化

Full-Text   Cite this paper   Add to My Lib

Abstract:

兽用抗生素和微量重金属作为饲料添加剂广泛用于畜禽养殖业,但超量使用是导致畜禽粪便中高浓度抗生素和重金属残留的根本原因。随着我国畜禽养殖业的规模化发展,畜禽粪便中残留的四环素类抗生素和重金属(铜、锌、砷)及其复合污染对生态环境和人类健康构成了巨大的潜在威胁。针对这种状况,总结了我国四环素类抗生素(包括四环素、土霉素和金霉素)和微量重金属元素(铜、锌、砷)在畜禽粪便中的残留量及其区域分布特征,并概述了这两类物质在畜禽粪便生物处理过程(堆肥和厌氧消化)中的转化、降解及其影响。畜禽粪便中残留的抗生素和重金属可导致环境中出现耐药菌与抗性基因,是环境与健康领域的又一重大挑战,其影响不容忽视。

References

[1]  张慧敏, 章明奎, 顾国平. 浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J]. 生态与农村环境学报, 2008, 24(3):69-73.ZHANG Hui-min, ZHANG Ming-kui, GU Guo-ping. Residues of tetracyclines in livestock and poultry manures and agricultural soils from North Zhejiang Province[J]. Journal of Ecology and Rural Environment, 2008, 24(3):69-73.
[2]  周启星, 罗 义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251.ZHOU Qi-xing, LUO Yi, WANG Mei-e. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution:A review[J]. Asian Journal of Ecotoxicology, 2007, 2(3):243-251.
[3]  Koike S, Krapac I, Oliver H, et al. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period[J]. Applied and Environmental Microbiology, 2007, 73(15):4813.
[4]  魏建英, 张 然, 丁 胜, 等. 抗生素类饲料添加剂在畜牧业中的使用[J]. 内蒙古农业科技, 2004(4):52-53.WEI Jian-ying, ZHANG Ran, DING Sheng, et al. Application of antibiotics as feed additive in livestock industries[J]. Inner Mongolia Agricultural Science and Technology, 2004(4):52-53.
[5]  阮存鑫. 四环素与铜复合污染对土壤硝化作用及植物生长的影响[D]. 南京:南京林业大学, 2010.RUAN Cun-xing. Effect of combined pollution of tetracycline and copper on soil nitrification and plant grow[D]. Nanjing: Nanjing Forestry University, 2010.
[6]  Heilig S, Lee P, Breslow L. Curtailing antibiotic use in agriculture:It is time for action:This use contributes to bacterial resistance in humans[J]. Western Journal of Medicine, 2002, 176(1):9.
[7]  Wollenberger L, Halling-S?覬rensen B, Kusk K O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna[J]. Chemosphere, 2000, 40(7):723-730.
[8]  Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1):109-118.
[9]  Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5):1069-1075.
[10]  Sarmah A K, Meyer M T, Boxall A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs)in the environment[J]. Chemosphere, 2006, 65(5):725-759.
[11]  陈育枝, 张元元, 袁希平, 等. 动物四环素类抗生素现状及前景[J]. 兽药与饲料添加剂, 2006, 11(3):16-17.CHEN Yu-zhi, ZHANG Yuan-yuan, YUAN Xi-ping, et al. Application and perspective of tetracyclines in animal industries[J]. Veterinary Pharmaceuticals & Feed Additives, 2006, 11(3):16-17.
[12]  李兆君, 姚志鹏, 张 杰, 等. 兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展[J]. 生态毒理学报, 2008, 3(1):15-20.LI Zhao-jun, YAO Zhi-peng, ZHANG Jie, et al. A Review on fate and ecological toxicity of veterinary antibiotics in soil environments[J]. Asian Journal of Ecotoxicology, 2008, 3(1):15-20.
[13]  李瑞萍, 张 艺, 黄应平. 环境样品中四环素类抗生素的检测技术[J]. 化学进展, 2008, 20(12):2075-2082.LI Rui-ping, ZHANG Yi, HUANG Ying-ping. Determination of tetracycline antibiotics in the environmental samples[J]. Progress in Chemistry, 2008, 20(12):2075-2082.
[14]  Chen W R, Huang C H. Transformation of tetracyclines mediated by Mn(Ⅱ)and Cu(Ⅱ) ions in the presence of oxygen[J]. Environmental Science & Technology, 2009, 43(2):401-407.
[15]  Nelson M L. Chemical and biological dynamics of tetracyclines[J]. Adv Dent Res, 1998, 12:5-11.
[16]  Albert A, Rees C W. Avidity of the tetracyclines for the cations of metals[J]. Nature, 1956, 177(4505):433-434.
[17]  Doluisio J T, Martin A N. Metal complexation of tetracycline hydrochlorides[J]. Journal of Medicinal Chemistry, 1963, 6(1):16-22.
[18]  Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1):1-13.
[19]  Donoho A. Biochemical studies on the fate of monensin in animals and in the environment[J]. Journal of Animal Science, 1984, 58(6):1528.
[20]  Elmund G K, Morrison S, Grant D, et al. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste[J]. Bulletin of Environmental Contamination and Toxicology, 1971, 6(2):129-132.
[21]  彭来真. 畜禽粪便中铜、锌、砷在土壤—蔬菜系统的迁移和富集[D]. 福州:福建农林大学, 2007.PENG Lai-zhen. Move and concentrate of copper, zinc, arsenic in the livestock and poultry excrement in the soil-vegetable system[D]. Fuzou:Fujian Agriculture and Forestry University, 2007.
[22]  刘荣乐, 李书田, 王秀斌, 等. 我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J]. 农业环境科学学报, 2005, 24(2):392-397.LIU Rong-le, LI Shu-tian, WANG Xiu-bin, et al. The situation and analysis on heavy metal content of commercial organic fertilizers and organic waste in China[J]. Journal of Agro-Environment Science, 2005, 24(2):392-397.
[23]  田 野, 刘善江, 马 良, 等. 有机肥料中重金属测定综述[J]. 中国农学通报, 2011, 27(7):16-21.TIAN Ye, LIU Shan-jiang, MA Liang, et al. Determination summary of heavy metals in organic fertilizer[J]. Chinese Agricultural Science Bulletin, 2011, 27(7):16-21.
[24]  Henry C, Harrison R. Fate of trace metals in sewage sludge compost[M]. Biogeochemistry of Trace Metals, Adriano, D. C. , 1992, (ISBN 08-737-15233. ):195-216.
[25]  王 朋. 抗生素及其与重金属复合污染的玉米吸收和毒性研究[D]. 北京:中国科学院生态环境研究中心, 2010.WANG Peng. Maize(Zea mays L.) uptake and toxicity of antibiotics and antibiotic-heavy metal complexes[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2010.
[26]  周启星, 程 云, 张倩茹, 等. 复合污染生态毒理效应的定量关系分析[J]. 中国科学:C 辑, 2003, 33(6):566-573.ZHOU Qi-xing, CHENG Yun, ZHANG Qian-ru, et al. The quantitative relationship analysis on the ecotoxicological effects of combined pollution[J]. Science in China: Series C, 2003, 33(6):566-573.
[27]  何勇田, 熊先哲. 复合污染研究进展[J]. 环境科学, 1994, 15(6):79-83.HE Yong-tian, XIONG Xian-zhe. Research progress on combined pollution[J]. Chinese Journal of Environmental Science, 1994, 15(6):79-83.
[28]  Turel I. The interactions of metal ions with quinolone antibacterial agents[J]. Coordination Chemistry Reviews, 2002, 232(1):27-47.
[29]  López-Gresa M, Ortiz R, Perello L, et al. Interactions of metal ions with two quinolone antimicrobial agents(cinoxacin and ciprofloxacin):Spectroscopic and X-ray structural characterization. Antibacterial studies[J]. Journal of Inorganic Biochemistry, 2002, 92(1):65-74.
[30]  Wallis S C, Gahan L R, Charles B G, et al. Copper(II)complexes of the fluoroquinolone antimicrobial ciprofloxacin. Synthesis, X-ray structural characterization, and potentiometric study[J]. Journal of Inorganic Biochemistry, 1996, 62(1):1-16.
[31]  文美琼, 高云涛, 罗永刚, 等. 四环素-铜(Ⅱ)配合物与 DNA 相互作用的吸收光谱研究[J]. 感光科学与光化学, 2005, 23(1):71-78.WEN Mei-qiong, GAO Yun-tao, LUO Yong-gang, et al. Absorption spectra research on the interaction between tetracycline, Cu(II)complex and DNA[J]. Photographic Science and Photochemistry, 2005, 23(1):71-78.
[32]  孙建平. 抗生素与重金属对猪场废水厌氧消化的抑制效应及其调控对策[D]. 杭州:浙江大学, 2009.SUN Jian-ping. Inhibitory effect of antibiotics and heavy metals on anaerobic digestion of piggery wastewater and its control strategy[D]. Hangzhou:Zhejiang University, 2009.
[33]  Kong W D, Zhu Y G, Fu B J, et al. The veterinary antibiotic oxytetracy cline and Cu influence functional diversity of the soil microbial community[J]. Environmental Pollution, 2006, 143(1):129-137.
[34]  季秀玲, 魏云林, 林连兵. 细菌抗生素和重金属协同选择抗性机制研究进展[J]. 生物技术通报, 2010(5):65-69.JI Xiu-ling, WEI Yun-lin, LIN Lian-bing. Research advances on co-selection resistant mechanisms of antibiotic and heavy metals resistance in bacteria[J]. Biotechnology Bulletin, 2010(5):65-69.
[35]  李彬辉, 许燕滨, 赵欣欣, 等. 养殖废水中抗生素与重金属交叉抗性微生物的筛选及其抗性研究[J]. 中国农学通报, 2012, 28(11):103-107.LI Bin-hui, XU Yan-bin, ZHAO Xin-xin, et al. Screening on resistance strains of antibiotic and heavy metal from breeding wastewater and its resistance research[J]. Chinese Agricultural Science Bulletin, 2012, 28(11):103-107.
[36]  Akinbowale O L, Peng H, Grant P, et al. Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout(Oncorhynchus mykiss)farms in Australia[J]. International Journal of Antimicrobial Agents, 2007, 30(2):177-182.
[37]  Parkhill J, Dougan G, James K, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18[J]. Nature, 2001, 413(6858):848-852.
[38]  吴晓凤. 猪粪生物处理过程中残留四环素类抗生素与重金属铜的迁移转化[D]. 北京:中国科学院生态环境研究中心, 2011.WU Xiao-feng. The behavior of residual tetracyclines and Cu during the biological treatment of swine manure[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2011.
[39]  Arikan O A, Sikora L J, Mulbry W, et al. Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves[J]. Bioresource Technology, 2007, 98(1):169-176.
[40]  Bao Y, Zhou Q, Guan L, et al. Depletion of chlortetracycline during composting of aged and spiked manures[J]. Waste Management, 2009, 29(4):1416-1423.
[41]  Ramaswamy J, Prasher S O, Patel R M, et al. The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource Technology, 2010, 101(7):2294-2299.
[42]  Kakimoto T, Osawa T, Funamizu N. Antibiotic effect of amoxicillin on the feces composting process and reactivation of bacteria by intermittent feeding of feces[J]. Bioresource Technology, 2007, 98:3555-3560.
[43]  Kakimoto T, Funamizu N. Factors affecting the degradation of amoxicillin in composting toilet[J]. Chemosphere, 2007, 66(11):2219-2224.
[44]  Dolliver H, Gupta S, Noll S. Antibiotic degradation during manure composting[J]. Journal of Environmental Quality, 2008, 37(3):1245-1253.
[45]  Wu X, Wei Y, Zheng J, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresour Technol, 2011, 102(10):5924-5931.
[46]  Jia A, Xiao Y, Hu J Y, et al. Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(22):4655-4662.
[47]  S?覬eborg T, Ingerslev F, Halling-S?覬rensen B. Chemical stability of chlortetracycline and chlortetracycline degradation products and epimers in soil interstitial water[J]. Chemosphere, 2004, 57(10):1515-1524.
[48]  Halling-S?覬rensen B, Lykkeberg A, Ingerslev F, et al. Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS[J]. Chemosphere, 2003, 50(10):1331-1342.
[49]  Sanderson H, Ingerslev F, Brain R A, et al. Dissipation of oxytetracycline, chlortetracycline, tetracycline and doxycycline using HPLC-UV and LC/MS/MS under aquatic semi-field microcosm conditions[J]. Chemosphere, 2005, 60(5):619-629.
[50]  Loke M-L, Jespersen S, Vreeken R, et al. Determination of oxytetracycline and its degradation products by high-performance liquid chromatography-tandem mass spectrometry in manure-containing anaerobic test systems[J]. Journal of Chromatography B, 2003, 783(1):11-23.
[51]  Halling-Sorensen B, Sengelov G, Tjornelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3):263-271.
[52]  Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs)in the environment[J]. Chemosphere, 2006, 65(5):725-759.
[53]  Wang Q Q, Yates S R. Laboratory study of oxytetracycline degradation kinetics in animal manure and soil[J]. Journal of Agricultural and Food Chemistry, 2008, 56(5):1683-1688.
[54]  Arikan O A, Mulbry W, Rice C. Management of antibiotic residues from agricultural sources:Use of composting to reduce chlortetracycline residues in beef manure from treated animals[J]. Journal of Hazardous Materials, 2009, 164(2-3):483-489.
[55]  张树清, 张夫道, 刘秀梅, 等. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学, 2006, 39(2):337-343.ZHANG Shu-qing, ZHANG Fu-dao, LIU Xiu-mei, et al. Degradation of antibiotics and passivation of heavy metals during thermophilic composting process[J]. Scientia Agricultura Sinica, 2006, 39(2):337-343.
[56]  Sanz J L, Rodriguez N, Amils R. The action of antibiotics on the anaerobic digestion process[J]. Applied Microbiology and Biotechnology, 1996, 46(5-6):587-592.
[57]  Gartiser S, Urich E, Alexy R, et al. Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes[J]. Chemosphere, 2007, 66(10):1839-1848.
[58]  Alvarez J A, Otero L, Lema J M, et al. The effect and fate of antibiotics during the anaerobic digestion of pig manure[J]. Bioresource Technology, 2010, 101(22):8581-8586.
[59]  Arikan O A, Sikora L J, Mulbry W, et al. The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves[J]. Process Biochemistry, 2006, 41(7):1637-1643.
[60]  Loftin K A, Henny C, Adams C D, et al. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate[J]. Environmental Toxicology and Chemistry, 2005, 24(4):782-788.
[61]  Lallai A, Mura G, Onnis N. The effects of certain antibiotics on biogas production in the anaerobic digestion of pig waste slurry[J]. Bioresource Technology, 2002, 82(2):205-208.
[62]  Kuhne M, Ihnen D, Moller G, et al. Stability of tetracycline in water and liquid manure[J]. Journal of Veterinary Medicine Series a-Physiology Pathology Clinical Medicine, 2000, 47(6):379-384.
[63]  Arikan O A. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves[J]. Journal of Hazardous Materials, 2008, 158(2-3):485-490.
[64]  Eneji A E, Honna T, Yamamoto S, et al. The relationship between total and available heavy metals in composted manure[J]. Journal of Sustainable Agriculture, 2003, 23(1):125-134.
[65]  Albores A F, Cid B P, Gomez E F, et al. Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples[J]. Analyst, 2000, 125(7):1353-1357.
[66]  Kunito T, Saeki K, Goto S, et al. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils[J]. Bioresource Technology, 2001, 79(2):135-146.
[67]  刘浩荣, 宋海星, 荣湘民, 等. 钝化剂对好氧高温堆肥处理猪粪重金属含量及形态的影响[J]. 生态与农村环境学报, 2008, 24(3):74-80.LIU Hao-rong, SONG Hai-xing, RONG Xiang-min, et al. Effect of heavy metal passivator on concentrations and forms of heavy metals in pig manure composted aerobically under high temperature[J]. Journal of Ecology and Rural Environment, 2008, 24(3):74 - 80.
[68]  郑国砥, 陈同斌, 高 定, 等. 好氧高温堆肥处理对猪粪中重金属形态的影响[J]. 中国环境科学, 2005, 25(1):6-9.ZHENG Guo-di, CHEN Tong-bin, GAO Ding, et al. Influence of high temperature aerobic composting treatment on the form of heavy metals in pig manure[J]. China Environmental Science, 2005, 25(1):6-9.
[69]  Hsu J H, Lo S L. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure[J]. Environmental Pollution, 2001, 114(1):119-127.
[70]  何增明, 刘 强, 谢桂先, 等. 好氧高温猪粪堆肥中重金属砷、铜、锌的形态变化及钝化剂的影响[J]. 应用生态学报, 2010, 21(10):2659-2665.HE Zeng-ming, LIU Qiang, XIE Gui-xian, et al. Changes of heavy metals form during aerobic high temperature composting of pig manure and the effects of passivators[J]. Chinese Journal of Applied Ecology, 2010, 21(10):2659-2665.
[71]  Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process:A review[J]. Bioresour Technol, 2008, 99(10):4044-4064.
[72]  Takashima M, Shimada K, Speece R E. Minimum requirements for trace metals(Iron, Nickel, Cobalt, and Zinc)in thermophilic and mesophilic methane fermentation from glucose[J]. Water Environment Research, 2011, 83(4):339-346.
[73]  金仁村, 黄冠男, 沈李东. 厌氧消化工艺的金属抑制现象[J]. 环境污染与防治, 2010, 32(1):78-84.JIN Ren-cun, HUANG Guan-nan, SHEN Li-dong. Metal inhibition on anaerobic digestion[J]. Environmental Pollution & Control, 2010, 32(1):78-84.
[74]  郁建栓. 浅谈重金属对生物毒性效应的分子机理[J]. 环境污染与防治, 1996, 18(4):28-31.YU Jian-shuan. Discussion on the molecular mechanism of heavy metals biological toxicity effect[J]. Environmental Pollution & Control, 1996, 18(4):28-31.
[75]  Zayed G, Winter J. Inhibition of methane production from whey by heavy metals-protective effect of sulfide[J]. Appl Microbiol Biotechnol, 2000, 53:726-731.
[76]  Bound J, Voulvoulis N. Pharmaceuticals in the aquatic environment-a comparison of risk assessment strategies[J]. Chemosphere, 2004, 56(11):1143-1155.
[77]  Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:A review of recent research data[J]. Toxicology Letters, 2002, 131(1):5-17.
[78]  沈 颖, 魏源送, 郑嘉熹, 等. 猪粪中四环素类抗生素残留物的生物降解[J]. 过程工程学报, 2009, 9(5): 962-968.SHEN Ying, WEI Yuan-song, ZHENG Jia-xi, et al. Biological degradation of tetracyclines antibiotics residues in swine manure[J]. The Chinese Journal of Process Engineering, 2009, 9(5): 962-968.
[79]  张树清, 张夫道, 刘秀梅, 等. 规模化养殖畜禽粪主要有害成分测定分析研究[J]. 植物营养与肥料学报, 2005, 11(6):822-829.ZHANG Shu-qing, ZHANG Fu-dao, LIU Xiu-mei, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots[J]. Plant Nutrition and Fertilizer Science, 2005, 11(6):822-829.
[80]  沈 颖. 集约化养猪场猪粪中四环素类抗生素残留及其堆肥去除的研究[D]. 北京: 中国科学院生态环境研究中心, 2009.SHEN Ying. Tetracycline antibiotics in swine manure of concentrated animal feeding operations:Residues and removal by composting[D]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2009.
[81]  胡献刚, 罗 义, 周启星, 等. 固相萃取-高效液相色谱法测定畜牧粪便中 13 种抗生素药物残留[J]. 分析化学, 2008, 36(9):1162-1166.HU Xian-gang, LUO Yi, ZHOU Qi-xing, et al. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2008, 36(9):1162-1166.
[82]  Zilles J T S, Jindal A, Robert M, et al. Presence of macrolide-lincosamide-streptogramin B and tetracycline antimicrobials in swine waste treatment processes and amended soil[J]. Water Environment Research, 2005, 77(1):57-62.
[83]  Barber R, Braude R, Mitchell K. Antibiotic and copper supplements for fattening pigs[J]. Br J Nutr, 1955, 9:378-381.
[84]  贡娇娜. 猪场内外环境中抗铜肠细菌及其抗性基因的研究[D]. 昆明:云南大学, 2010.GONG Jiao-na. Research on copper resistant enteric bacteria and resistance gene around swine farm[D]. Kunming: Yunnan University, 2010.
[85]  Yan-Xia L, Wei L, Juan W, et al. Contribution of additives Cu to its accumulation in pig feces:Study in Beijing and Fuxin of China[J]. Journal of Environmental Sciences, 2007, 19:610-615.
[86]  王幼明, 王小龙. 高铜的应用对畜禽的慢性中毒作用及对环境生态的影响[J]. 中国兽医杂志, 2001, 37(6):36-38.WANG You-ming, WANG Xiao-long. Application of high level copper for chronic poisoning effect on livestock and poultry and ecological environment[J]. Chinese Journal of Veterinary Medicine, 2001, 37(6):36-38.
[87]  董占荣, 陈一定, 林咸永, 等. 杭州市郊规模化养殖场猪粪的重金属含量及其形态[J]. 浙江农业学报, 2008, 20(1):35-39.DONG Zhan-rong, CHEN Yi-ding, LIN Xian-yong, et al. Investigation on the contents and fractionation of heavy metals in swine manures from intensive livestock farms in the suburb of Hangzhou[J]. Acta Agriculturae Zhejiangensis, 2008, 20(1):35-39.
[88]  CANG L, WANG Y J, ZHOU D M, et al. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China[J]. Journal of Environmental Sciences, 2004, 16(3): 371-374.
[89]  Jia D A, Zhou D M, Wang Y J, et al. Adsorption and cosorption of Cu(II)and tetracycline on two soils with different characteristics[J]. Geoderma, 2008, 146(1-2):224-230.
[90]  张雨梅. 畜禽养殖废弃物中有机胂残留对环境的影响[J]. 农业环境科学学报, 2007, 26(3):224-228.ZHANG Yu-mei. Effects of organoarsenic compounds in animal manures on environment[J]. Journal of Agro-Environment Science, 2007, 26(3):224-228.
[91]  Garbarino J R, Bednar A J, Rutherford D W, et al. Environmental fate of roxarsone in poultry litter:I. Degradation of roxarsone during composting[J]. Environmental Science & Technology, 2003, 37(8):1509-1514.
[92]  Li Y, Chen T. Concentrations of additive arsenic in Beijing pig feeds and the residues in pig manure[J]. Resources, Conservation and Recycling, 2005, 45(4):356-367.
[93]  Rutherford D, Bednar A, Garbarino J, et al. Environmental fate of roxarsone in poultry litter:Part II. Mobility of arsenic in soils amended with poultry litter[J]. Environmental Science & Technology, 2003, 37(8):1515-1520.
[94]  袁 慧, 陈竞峰. 畜禽配合饲料中砷的污染量及其分析报告[J]. 湖南饲料, 2000(3):2-3.YUAN Hui, CHEN Jing-feng. The analysis report on contamination level of arsenic in livestock and poultry feed[J]. Hunan Feed, 2000 (3):2-3.
[95]  孙 歆, 韦朝阳, 王五一. 土壤中砷的形态分析和生物有效性研究进展[J]. 地球科学进展, 2006, 21(6):625-631.SUN Xin, WEI Chao-yang, WANG Wu-yi. The research progress on arsenic species analysis and its bioavailability[J]. Advances in Earth Science, 2006, 21(6):625-631.
[96]  曾希柏, 李莲芳, 白玲玉, 等. 山东寿光农业利用方式对土壤砷累积的影响[J]. 应用生态学报, 2007, 18(2):310-316.ZENG Xi-bai, LI Lian-fang, BAI Ling-yu, et al. Arsenic accumulation in different agricultural soils in Shouguang of Shandong Province[J]. Chinese Journal of Applied Ecology, 2007, 18(2):310-316.
[97]  和秋红, 曾希柏. 土壤中砷的形态转化及其分析方法[J]. 应用生态学报, 2008, 19(12):2763-2768.HE Qiu-hong, ZENG Xi-bai. Form transformation of arsenic in soil and corresponding analyzing methods[J]. Chinese Journal of Applied Ecology, 2008, 19(12):2763-2768.
[98]  王志武, 孙建钢, 孙锐锋, 等. 微量元素锌的生物学功能及其应用进展[J]. 饲料研究, 2006(8):12-16.WANG Zhi-wu, SUN Jian-gang, SUN Yue-feng, et al. The biological function of zinc and its application progress[J]. Feed Research, 2006 (8):12-16.
[99]  邢廷铣. 研究和应用环保型饲料是未来饲料工业发展的必然趋势[J]. 饲料工业, 2005, 26(11):1-5.XING Ting-xi. Research and application of green feed is the inevitable trend of future development of feed industry[J]. Feed Industry, 2005, 26(11):1-5.
[100]  游金明, 翟明仁, 张宏福. 猪饲料中必需微量元素的盈缺对养猪生产的影响[J]. 中国饲料, 2003, 8:16-17.YOU Jin-ming, ZHAI Ming-ren, ZHANG Hong-fu. The effect of sufficiency or lack about essential trace elements in swine feed on swine industry[J]. Chinese Feed, 2003, 8:16-17.
[101]  Hickey R F, Vanderwielen J, Switzenbaum M S. The effect of heavy metals on methane production and hydrogen and carbon monoxide levels during batch anaerobic sludge digestion[J]. Water Res, 1989, 23(2):207-218.
[102]  Couillard D, Mercier G. Optimum residence time(in CSTR and airlift reactor)for bacterial leaching of metals from anaerobic sewage sludge[J]. Water Res, 1991, 25(2):211-218.
[103]  Brooks C S, Brooks P L, Hansen G, et al. Metal recovery from industrial waste[M]. Michigan: Lewis Publishers, 1991.
[104]  Torma A E. Biotechnology applied to mining of metals[J]. Biotechnology Advances, 1983, 1(1):73-80.
[105]  周顺桂, 周立祥, 黄焕忠. 生物淋滤技术在去除污泥中重金属的应用[J]. 生态学报, 2002, 22(1):125-133.ZHOU Shun-gui, ZHOU Li-xiang, HUANG Huan-zhong. Removal of heavy metals from sewage sludge by bioleaching[J]. Acta Ecologica Sinica, 2002, 22(1):125-133.
[106]  周 俊, 王电站, 刘奋武, 等. 生物沥浸法去除猪粪中重金属和提高其脱水性能研究[J]. 环境科学学报, 2011, 31(2):388-394.ZHOU Jun, WANG Dian-zhan, LIU Fen-wu, et al. Removal of heavy metals and dewaterability of pig slurry facilitated by bioleaching[J]. Acta Scientiae Circumstantiae, 2011, 31(2):388-394.
[107]  单英杰, 章明奎. 不同来源畜禽粪的养分和污染物组成[J]. 中国生态农业学报, 2012, 20(1):80-86.SHAN Ying-jie, ZHANG Ming-kui. Contents of nutrient elements and pollutants in different sources of animal manures[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1):80-86.
[108]  Nicholson F, Chambers B, Williams J, et al. Heavy metal contents of livestock feeds and animal manures in England and Wales[J]. Bioresour Technol, 1999, 70(1):23-31.
[109]  Xiong X, Li Y X, Li W, et al. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture[J]. Resources, Conservation and Recycling, 2010, 54(11):985-990.
[110]  姚丽贤, 黄连喜, 蒋宗勇, 等. 动物饲料中砷、铜和锌调查及分析[J]. 环境科学, 2013, 34(2):732-739.YAO Li-xian, HUANG Lian-xi, JIANG Zong-yong, et al. Investigation of As, Cu and Zn species and concentrations in animal feeds[J]. Environmental Science, 2013, 34(2):732-739.
[111]  Sanz J, Rodriguez N, Amils R. The action of antibiotics on the anaerobic digestion process[J]. Appl Microbiol Biotechnol, 1996, 46(5):587-592.
[112]  Lallai A, Mura G, Onnis N. The effects of certain antibiotics on biogas production in the anaerobic digestion of pig waste slurry[J]. Bioresour Technol, 2002, 82(2):205-208.
[113]  Loftin K A, Henny C, Adams C D, et al. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate[J]. Environmental Toxicology and Chemistry, 2009, 24(4):782-788.
[114]  Stone J J, Clay S A, Zhu Z, et al. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion[J]. Water Res, 2009, 43(18):4740-4750.
[115]  lvarez J, Otero L, Lema J, et al. The effect and fate of antibiotics during the anaerobic digestion of pig manure[J]. Bioresour Technol, 2010, 101(22):8581-8586.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133