全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蘑菇培养土生物炭堆肥化利用及其对水稻生长的影响

DOI: 10.11654/jaes.2014.10.022, PP. 2036-2041

Keywords: 蘑菇培养土,生物炭,堆肥,物化特性,水稻栽培

Full-Text   Cite this paper   Add to My Lib

Abstract:

为尝试将蘑菇培养土制成生物炭来改善生物肥料的品质,重点考察了添加蘑菇培养土生物炭对猪粪堆肥的物化特性影响。结果表明:在500℃下热解制备的蘑菇培养土生物炭分别以0%、5%、10%、15%(W/W)的比例与猪粪混合堆肥后,显着降低了堆肥的电导率、初始含水率和有机物的损失量;堆肥中Ca与K的含量与添加生物炭没有太大的相关性,N的含量与生物炭添加比例具有很好的正相关性,P与Mg的改变量则随着生物炭添加比例的增加呈现下降趋势。水稻栽培实验结果表明施用生物炭能有效促进水稻生长,稻穗(干重)最多可增产49%.

References

[1]  Petric I, ?estan A, ?estan I. Influence of wheat straw addition on composting of poultry manure[J]. Process Safety and Environmental Protection, 2009, 87(3):206-212.
[2]  Strom P F. Effect of temperature on bacterial specise-diversity in thermophilic solid-waste compositing.[J]. Applied and Environmental Microbiology, 1985, 50(4):899-905.
[3]  Glaser B. Prehistorically modified soils of central Amazonia:A model for sustainable agriculture in the twenty-first century[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2007, 362(1478):187-196.
[4]  Jindo K, Suto K, Matsumoto K, et al. Chemical and biochemical characterization of biochar-blended composts prepared from poultry manure[J]. Bioresource Technology, 2012, 110:396-404.
[5]  Belyaeva O N, Haynes R J, Sturm E C. Chemical, physical and microbial properties and microbial diversity in manufactured soils produced from co-composting green waste and biosolids[J]. Waste Management, 2012, 32(12):2248-2257.
[6]  Miller F C, Finstein M S. Materials balance in the composting of wastewater sludge as affected by process control[J]. Wat Pollut Contr Fed, 1985, 57 (2):122-127.
[7]  RhoadesJ D, Shouse P J, Lesch S M, et al. Determining soil salinity from soil electrical conductivity using different models and estimates[J]. Soli Sci Soc AM, 1990(54):46-54.
[8]  Corwin D L, Lesch S M. Application of soil electrical conductivity to precision agriculture[J]. Agronomy Journal, 2003, 95(3):445-471.
[9]  朱翠英, 王 强, 时连辉, 等. 控释肥对菇渣基质电导率及容器苗生长的影响[J]. 北方园艺, 2009(8):1-4. ZHU Cui-ying, WANG Qiang, SHI Lian-hui, et al. Effect of controlled-release fertilizer on electrical conductivity of spent mushroom compost substrate and container seedlings growth[J]. Northern Horticulture, 2009(8):1-4.
[10]  Trompowaky P M, Bentites V D M, Madari B E, et al. Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal[J]. Organic Geochemistry, 2005, 36(11):1480-1489.
[11]  Lau K L, Tsang Y Y, Chiu S W. Use of spent mushroom compost to bioremediate PAH-contaminated samples[J]. Chemosphere, 2003, 52(9):1539-1546.
[12]  Finney K N, Ryu C, Sharifi V N, et al. The reuse of spent mushroom compost and coal tailings for energy recovery:Comparison of thermal treatment technologies[J]. Bioresource Technology, 2009, 100(1):310-315.
[13]  Finney K N, Sharifi V N, Swithenbank J. Combustion of spent mushroom compost and coal tailing pellets in a fluidised-bed[J]. Renewable Energy, 2009, 34(3):860-868.
[14]  Kapu N U S, Manning M, Hurley T B, et al. Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars[J]. Bioresource Technology, 2012, 114:399-405.
[15]  Brunetti G, Soler-rovira P, Matarrese F, et al. Composition and structural characteristics of humified fractions during the co-composting process of spent mushroom substrate and wheat straw[J]. Journal of Agricultural and Food Chemistry, 2009, 57(22):10859-10865.
[16]  Kulcu R, Sonmezi I, Yaldiz O, et al. Composting of spent mushroom compost, carnation wastes, chicken and cattle manures[J]. Bioresource Technology, 2008, 99(17):8259-8264.
[17]  Rao J R, Watabe M, Stewart T A, et al. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands[J]. Waste Manag, 2007, 27(9):1117-1128.
[18]  Xu G, Wei L L, Sun J N, et al. What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil:Direct or indirect mechanism?[J]. Ecological Engineering, 2013, 52:119-124.
[19]  Wu W, Yang M, Feng Q, et al. Chemical characterization of rice straw-derived biochar for soil amendment[J]. Biomass and Bioenergy, 2012, 47(2):68-76.
[20]  Belyaeva O N, Haynes R J. Comparison of the effects of conventional organic amendments and biochar on the chemical, physical and microbial properties of coal fly ash as a plant growth medium[J]. Environmental Earth Sciences, 2011, 66(7):1987-1997.
[21]  Uzoma K C, Inoue M, Andry H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition[J]. Soil Use and Management, 2011, 27(2):205-212.
[22]  Van Z L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2009, 327(1-2):235-246.
[23]  Borchard N, Wolf A, Laabs V, et al. Physical activation of biochar and its meaning for soil fertility and nutrient leaching:A greenhouse experiment[J]. Soil Use and Management, 2012, 28(2):177-184.
[24]  Tsai W T, Liu S C, Chen H R, et al. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment[J]. Chemosphere, 2012, 89(2):198-203.
[25]  Jindo K, Sanchez-monedero M A, Hernandez T, et al. Biochar influences the microbial community structure during manure composting with agricultural wastes[J]. The Science of the Total Environment, 2012, 416:476-481.
[26]  Dias B O, Silva C A, Higashikawa F S, et al. Use of biochar as bulking agent for the composting of poultry manure:Effect on organic matter degradation and humification[J]. Bioresource Technology, 2010, 101(4):1239-1246.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133