Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interestingly, a defect in the immune system or suppression of immune response during conditions such as immunodeficiency may well predispose one to the devastating effects of BC. Thus, the outcome of an active immune response as detrimental or protective in the pathogenesis of BC may be dependent on the state of the patient's immunity, the severity of infection, and the magnitude of immune response. Here we reassess the function of the innate and acquired immunity in BC, the major sites of immune response, and the nature of the bioactive mediators. Furthermore, the potential link(s) between an ongoing immune response and structural alterations accompanying the disease and the success of therapies that can modulate the nature and extent of immune response in BC are elaborated upon. 1. Introduction Bronchiectasis (BC) is clinically characterized as irreversible dilation of the bronchi and bronchioles, leading to persistent cough, purulent sputum, and decreased airway flow, which can be accompanied by recurrent exacerbations. Disease detection has greatly advanced with the advent of high-resolution computed tomography (HRCT). However, management of the disease and treatment options are not yet fully optimal, and at present there is no disease-modifying treatment available for BC [1]. One major reason for this suboptimal treatment of the disease is the lack of conclusive evidence regarding the underlying cellular and molecular characteristics of BC, especially the role of the immune response. On one hand, multiple hematopoietic cells and their bioactive cellular and humoral products have been detected during expression and persistence of the disease, along with a positive association between BC and a series of chronic inflammatory diseases such as rheumatoid arthritis. On the other hand, a set of immunodeficiency disorders or subtle defects in the generation of a normal immune response have been shown to predispose an individual to development of BC [1]. Although no antigen specificity has been reported in BC, increased lymphocytes have been shown in submucosal and epithelial
References
[1]
P. T. King, “The pathophysiology of bronchiectasis,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 4, pp. 411–419, 2009.
[2]
L. Zheng, I. H. Shum, G. L. Tipoe et al., “Macrophages, neutrophils and tumour necrosis factor-α expression in bronchiectatic airways in vivo,” Respiratory Medicine, vol. 95, no. 10, pp. 792–798, 2001.
[3]
M. Gaga, A. M. Bentley, M. Humbert et al., “Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis,” Thorax, vol. 53, no. 8, pp. 685–691, 1998.
[4]
R. Sepper, Y. T. Konttinen, P. Kemppinen, T. Sorsa, and K. K. Eklund, “Mast cells in bronchiectasis,” Annals of Medicine, vol. 30, no. 3, pp. 307–315, 1998.
[5]
T. C. O'Shaughnessy, T. W. Ansari, N. C. Barnes, and P. K. Jeffery, “Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 3, pp. 852–857, 1997.
[6]
J. Eller, J. R. Lapa e Silva, L. W. Poulter, H. Lode, and P. J. Cole, “Cells and cytokines in chronic bronchial infection,” Annals of the New York Academy of Sciences, vol. 725, pp. 331–345, 1994.
[7]
J. R. Lapa e Silva, D. Guerreiro, B. Noble, L. W. Poulter, and P. J. Cole, “Immunopathology of experimental bronchiectasis,” American Journal of Respiratory Cell and Molecular Biology, vol. 1, no. 4, pp. 297–304, 1989.
[8]
T. Guran, R. Ersu, B. Karadag et al., “Withdrawal of inhaled steroids in children with non-cystic fibrosis bronchiectasis,” Journal of Clinical Pharmacy and Therapeutics, vol. 33, no. 6, pp. 603–611, 2008.
[9]
J. Angrill, C. Agustí, and A. Torres, “Bronchiectasis,” Current Opinion in Infectious Diseases, vol. 14, no. 2, pp. 193–197, 2001.
[10]
T. Guran, R. Ersu, B. Karadag et al., “Association between inflammatory markers in induced sputum and clinical characteristics in children with non-cystic fibrosis bronchiectasis,” Pediatric Pulmonology, vol. 42, no. 4, pp. 362–369, 2007.
[11]
A. P. Watt, V. Brown, J. Courtney et al., “Neutrophil apoptosis, proinflammatory mediators and cell counts in bronchiectasis,” Thorax, vol. 59, no. 3, pp. 231–236, 2004.
[12]
J. B. Y. Richman-Eisenstat, P. G. Jorens, C. A. Hebert, I. Ueki, and J. A. Nadel, “Interleukin-8: an important chemoattractant in sputum of patients with chronic inflammatory airway diseases,” American Journal of Physiology, vol. 264, no. 4, pp. L413–L418, 1993.
[13]
D. C. Currie, D. Pavia, and M. T. Lopez-Vidriero, “Impaired tracheobronchial clearance in bronchiectasis,” Thorax, vol. 42, no. 2, pp. 126–130, 1987.
[14]
S. C. H. Chan, V. O. Y. Leung, M. S. M. Ip, and D. K. Y. Shum, “Shed syndecan-1 restricts neutrophil elastase from α1-antitrypsin in neutrophilic airway inflammation,” American Journal of Respiratory Cell and Molecular Biology, vol. 41, no. 5, pp. 620–628, 2009.
[15]
Y. Soini, J. Satta, M. Mtt, and H. Autio-Harmainen, “In vivo collagenase-2 (MMP-8) expression by human bronchial epithelial cells and monocytes/macrophages in bronchiectasis,” Journal of Pathology, vol. 194, no. 2, pp. 232–238, 2001.
[16]
A. Shoemark, A. Devaraj, M. Meister, L. Ozerovitch, D. M. Hansell, and R. Wilson, “Elevated peripheral airway nitric oxide in bronchiectasis reflects disease severity,” Respiratory Medicine, vol. 105, no. 6, pp. 885–891, 2011.
[17]
S. Loukides, D. Bouros, G. Papatheodorou, S. Lachanis, P. Panagou, and N. M. Siafakas, “Exhaled H2O2 in steady-state bronchiectasis: relationship with cellular composition in induced sputum, spirometry, and extent and severity of disease,” Chest, vol. 121, no. 1, pp. 81–87, 2002.
[18]
C. B. Wilson, P. W. Jones, C. J. O'Leary et al., “Systemic markers of inflammation in stable bronchiectasis,” European Respiratory Journal, vol. 12, no. 4, pp. 820–824, 1998.
[19]
M. Ip, W. K. Lam, J. C. Chan, and E. Liong, “Systemic effects of inflammation in bronchiectasis,” Respiratory Medicine, vol. 85, no. 6, pp. 521–525, 1991.
[20]
M. B. Murphy, D. J. Reen, and M. X. Fitzgerald, “Atopy, immunological changes, and respiratory function in bronchiectasis,” Thorax, vol. 39, no. 3, pp. 179–184, 1984.
[21]
M. A. Martínez-García, J. J. Soler-Catalu?a, M. Perpi?á-Tordera, P. Román-Sánchez, and J. Soriano, “Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis,” Chest, vol. 132, no. 5, pp. 1565–1572, 2007.
[22]
J. C. W. Mak, S. P. Ho, R. Y. H. Leung et al., “Elevated levels of transforming growth factor-β1 in serum of patients with stable bronchiectasis,” Respiratory Medicine, vol. 99, no. 10, pp. 1223–1228, 2005.
[23]
A. E. Nel, A. F. Strachan, H. E. Welke, and F. C. de Beer, “Acute phase response in bronchiectasis and bronchus carcinoma,” Respiration, vol. 45, no. 4, pp. 406–410, 1984.
[24]
N. J. Cano, C. Pichard, H. Roth, et al., “Clinical Research Group of the Société Francophone de Nutrition Entérale et Parentérale. C-reactive protein and body mass index predict outcome in end-stage respiratory failure,” Chest, vol. 126, pp. 540–546, 2004.
[25]
L. Zheng, G. Tipoe, W. K. Lam et al., “Up-regulation of circulating adhesion molecules in bronchiectasis,” European Respiratory Journal, vol. 16, no. 4, pp. 691–696, 2000.
[26]
M. á. Martínez-García, M. Perpi?á-Tordera, P. Román-Sánchez et al., “The association between bronchiectasis, systemic inflammation, and tumor necrosis factor α,” Archivos de Bronconeumologia, vol. 44, no. 1, pp. 8–14, 2008.
[27]
B. Ergan Arsava and L. C?plü, “Does airway colonization cause systemic inflammation in bronchiectasis?” Tuberk Toraks, vol. 59, pp. 340–347, 2011.
[28]
R. A. Stockley, “Bronchiectasis—new therapeutic approaches based on pathogenesis,” Clinics in Chest Medicine, vol. 8, no. 3, pp. 481–494, 1987.
[29]
P. Lloberes, E. Montserrat, J. M. Montserrat, and C. Picado, “Sputum sol phase proteins and elastase activity in patients with clinically stable bronchiectasis,” Thorax, vol. 47, no. 2, pp. 88–92, 1992.
[30]
D. K. Y. Shum, S. C. H. Chan, and M. S. M. Ip, “Neutrophil-mediated degradation of lung proteoglycans: stimulation by tumor necrosis factor-α in sputum of patients with bronchiectasis,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 5, pp. 1925–1931, 2000.
[31]
R. Sepper, K. Prikk, T. Tervahartiala et al., “Collagenase-2 and -3 are inhibited by doxycycline in the chronically inflamed lung in bronchiectasis,” Annals of the New York Academy of Sciences, vol. 878, pp. 683–685, 1999.
[32]
P. Goeminne and L. Dupont, “Non-cystic fibrosis bronchiectasis: diagnosis and management in 21st century,” Postgraduate Medical Journal, vol. 86, no. 1018, pp. 493–501, 2010.
[33]
J. V. Fahy, A. Schuster, I. Ueki, H. A. Boushey, and J. A. Nadel, “Mucus hypersecretion in bronchiectasis: the role of neutrophil proteases,” American Review of Respiratory Disease, vol. 146, no. 6, pp. 1430–1433, 1992.
[34]
D. A. Sykes, R. Wilson, and M. Greenstone, “Deleterious effects of purulent sputum sol on human ciliary function in vitro: at least two factors identified,” Thorax, vol. 42, no. 4, pp. 256–261, 1987.
[35]
L. A. Smallman, S. L. Hill, and R. A. Stockley, “Reduction of ciliary beat frequency in vitro by sputum from patients with bronchiectasis: a serine proteinase effect,” Thorax, vol. 39, no. 9, pp. 663–667, 1984.
[36]
R. A. Stockley, D. Bayley, S. L. Hill, A. T. Hill, S. Crooks, and E. J. Campbell, “Assessment of airway neutrophils by sputum colour: correlation with airways inflammation,” Thorax, vol. 56, no. 5, pp. 366–372, 2001.
[37]
R. A. Stockley, S. L. Hill, H. M. Morrison, and C. M. Starkie, “Elastolytic activity of sputum and its relation to purulence and to lung function in patients with bronchiectasis,” Thorax, vol. 39, no. 6, pp. 408–413, 1984.
[38]
S. Kim and J. A. Nadel, “Role of neutrophils in mucus hypersecretion in COPD and implications for therapy,” Treatments in Respiratory Medicine, vol. 3, no. 3, pp. 147–159, 2004.
[39]
M. C. Pasteur, S. M. Helliwell, S. J. Houghton et al., “An investigation into causative factors in patients with bronchiectasis,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 4 I, pp. 1277–1284, 2000.
[40]
M. Baydarian and R. N. Walter, “Bronchiectasis: introduction, etiology, and clinical features,” Disease-a-Month, vol. 54, no. 8, pp. 516–526, 2008.
[41]
Z. M. Metafratzi, A. N. Georgiadis, C. V. Ioannidou et al., “Pulmonary involvement in patients with early rheumatoid arthritis,” Scandinavian Journal of Rheumatology, vol. 36, no. 5, pp. 338–344, 2007.
[42]
R. J. Boyton and D. M. Altmann, “Asthma: new developments in cytokine regulation,” Clinical and Experimental Immunology, vol. 136, no. 1, pp. 13–14, 2004.
[43]
M. K. Demoruelle, M. H. Weisman, P. L. Simonian et al., “Airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: early injury or initiating site of autoimmunity?” Arthritis and Rheumatism, vol. 64, no. 6, pp. 1756–1761, 2012.
[44]
J. Popler, M. Alimohammadi, O. K?mpe, et al., “Autoimmune polyendocrine syndrome type 1: utility of KCNRG autoantibodies as a marker of active pulmonary disease and successful treatment with rituximab,” Pediatric Pulmonology, vol. 47, pp. 84–87, 2012.
[45]
A. C. Dunn, R. S. Walmsley, R. L. Dedrick, A. J. Wakefield, and C. M. Lockwood, “Anti-neutrophil cytoplasmic autoantibodies (ANCA) to bactericidal/permeability-increasing (BPI) protein recognize the carboxyl terminal domain,” Journal of Infection, vol. 39, no. 1, pp. 81–87, 1999.
[46]
T. E. Eaton, N. Lambie, and A. U. Wells, “Bronchiectasis following colectomy for Crohn's disease,” Thorax, vol. 53, no. 6, pp. 529–531, 1998.
[47]
M. A. Martínez García, L. Máiz Carro, and P. Catalán Serra, “Treatment of non-cystic fibrosis bronchiectasis,” Archivos de Bronconeumologia, vol. 47, pp. 599–609, 2011.
[48]
R. J. Boyton, C. Reynolds, F. N. Wahid et al., “IFNγ and CXCR-1 gene polymorphisms in idiopathic bronchiectasis,” Tissue Antigens, vol. 68, no. 4, pp. 325–330, 2006.
[49]
R. J. Boyton, J. Smith, M. Jones et al., “Human leucocyte antigen class II association in idiopathic bronchiectasis, a disease of chronic lung infection, implicates a role for adaptive immunity,” Clinical and Experimental Immunology, vol. 152, no. 1, pp. 95–101, 2008.
[50]
R. J. Boyton, J. Smith, R. Ward et al., “HLA-C and killer cell immunoglobulin-like receptor genes in idiopathic bronchiectasis,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 3, pp. 327–333, 2006.
[51]
S. M. Graham, “HIV-related pulmonary disorders: practice issues,” Annals of Tropical Paediatrics, vol. 27, no. 4, pp. 243–252, 2007.
[52]
S. Sheikh, K. Madiraju, P. Steiner, and M. Rao, “Bronchiectasis in pediatric AIDS,” Chest, vol. 112, no. 5, pp. 1202–1207, 1997.
[53]
S. D. Gadola, H. T. Moins-Teisserenc, J. Trowsdale, W. L. Gross, and V. Cerundolo, “TAP deficiency syndrome,” Clinical and Experimental Immunology, vol. 121, no. 2, pp. 173–178, 2000.
[54]
Y. Sugiyama, H. Maeda, K. Okumura, and F. Takaku, “Progressive sinobronchiectasis associated with the 'bare lymphocyte syndrome' in an adult,” Chest, vol. 89, no. 3, pp. 398–401, 1986.
[55]
L. Donato, H. De la Salle, D. Hanau et al., “Association of HLA class I antigen deficiency related to a TAP2 gene mutation with familial bronchiectasis,” Journal of Pediatrics, vol. 127, no. 6, pp. 895–900, 1995.
[56]
P. Tabatabaie, A. Aghamohammadi, S. Mamishi et al., “Evaluation of humoral immune function in patients with bronchiectasis,” Iranian Journal of Allergy, Asthma and Immunology, vol. 7, no. 2, pp. 69–77, 2008.
[57]
L. D. Notarangelo, A. Plebani, E. Mazzolari, A. Soresina, and M. P. Bondioni, “Genetic causes of bronchiectasis: primary immune deficiencies and the lung,” Respiration, vol. 74, no. 3, pp. 264–275, 2007.
[58]
A. C. Pereira, C. M. Kokron, B. M. S. Romagnolo et al., “Analysis of the sputum and inflammatory alterations of the airways in patients with common variable immunodeficiency and bronchiectasis,” Clinics, vol. 64, no. 12, pp. 1155–1160, 2009.
[59]
D. Detková, J. De Gracia, S. Lopes-da-Silva et al., “Common variable immunodeficiency: association between memory B cells and lung diseases,” Chest, vol. 131, no. 6, pp. 1883–1889, 2007.
[60]
C. Rivoisy, L. Gérard, D. Boutboul, et al., “DEFI study group. Parental consanguinity is associated with a severe phenotype in common variable immunodeficiency,” Journal of Clinical Immunology, vol. 32, pp. 98–105, 2012.
[61]
M. Hiramatsu, Y. Shiraishi, Y. Nakajima, et al., “Risk factors that affect the surgical outcome in the management of focal bronchiectasis in a developed country,” The Annals of Thoracic Surgery, vol. 93, pp. 245–250, 2012.
[62]
P. Boddana, L. H. Webb, J. Unsworth, M. Brealey, C. Bingham, and S. J. Harper, “Hypogammaglobulinemia and bronchiectasis in mycophenolate mofetil-treated renal transplant recipients: an emerging clinical phenomenon?” Clinical Transplantation, vol. 25, no. 3, pp. 417–419, 2011.
[63]
A. R. Gennery, A. J. Cant, G. P. Spickett et al., “Effect of immunosuppression after cardiac transplantation in early childhood on antibody response to polysaccharide antigen,” The Lancet, vol. 351, no. 9118, pp. 1778–1781, 1998.
[64]
D. Steinfort, M. Finlay, and L. Irving, “Diagnosis of peripheral pulmonary carcinoid tumor using endobronchial ultrasound,” Annals of Thoracic Medicine, vol. 3, no. 4, pp. 146–148, 2008.
[65]
L. Einsiedel, L. Fernandes, T. Spelman, D. Steinfort, and E. Gotuzzo, “Bronchiectasis is associated with human T-lymphotropic virus 1 infection in an Indigenous Australian population,” Clinical Infectious Diseases, vol. 54, pp. 43–50, 2012.
[66]
K. Sugisaki, T. Tsuda, T. Kumamoto, and S. Akizuki, “Clinicopathologic characteristics of the lungs of patients with human T cell lymphotropic virus type 1-associated myelopathy,” American Journal of Tropical Medicine and Hygiene, vol. 58, no. 6, pp. 721–725, 1998.
[67]
A. F. Barker, “Bronchiectasis,” The New England Journal of Medicine, vol. 346, no. 18, pp. 1383–1393, 2002.
[68]
D. Weycker, J. Edelsberg, M. Elizabeth Halloran et al., “Population-wide benefits of routine vaccination of children against influenza,” Vaccine, vol. 23, no. 10, pp. 1284–1293, 2005.
[69]
N. Kapur, S. Bell, J. Kolbe, and A. B. Chang, “Inhaled steroids for bronchiectasis,” Cochrane Database of Systematic Reviews, vol. 21, no. 1, Article ID CD000996, 2009.
[70]
G. Geri, S. Dadoun, T. Bui, et al., “Risk of infections in bronchiectasis during disease-modifying treatment and biologics for rheumatic diseases,” BMC Infectious Diseases, vol. 11, pp. 304–311, 2011.