全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

畜禽粪便中抗生素抗性基因(ARGs)污染问题及环境调控

DOI: 10.11654/jaes.2014.12.001, PP. 2281-2287

Keywords: 抗生素抗性基因(ARGs),畜禽养殖业,粪便,堆肥,化学抑制剂

Full-Text   Cite this paper   Add to My Lib

Abstract:

抗生素在畜禽养殖业的大量使用造成抗生素抗性基因(ARGs)污染日益严重.动物体内诱导出的抗性菌株随粪便排出后,通过基因水平转移进入土壤进而污染土壤和地下水环境.堆肥作为一种将粪便资源化的优良传统方法,能否有效去除畜禽粪便中的ARGs而防止环境污染值得探讨.通过总结畜禽粪便ARGs污染现状,粪便堆肥过程中微生物群落结构变化与影响微生物变化的因素以及堆肥可能对粪便中ARGs造成的影响,提出将堆肥作为去除畜禽粪便中ARGs的一种有效手段,利用堆肥产生的高温去除抗性菌株和抗性质粒等,并且考虑加入能直接灭杀肠道微生物的化学抑制剂(如石灰氮、胺类、吲哚等),实现降低畜禽粪便ARGs丰度的可能.据此强调开展畜禽粪便中ARGs研究的必要性,认为将堆肥和ARGs研究结合起来,可以有效地降低这种新型污染物的污染水平.

References

[1]  Chee-Sanford J, Aminov R, Krapac I, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied and Environmental Microbiology, 2001, 67(4):1494-1502.
[2]  罗 义, 周启星. 抗生素抗性基因(ARGs):一种新型环境污染物[J]. 环境科学学报, 2008, 28(8):1499-1505. LUO Yi, ZHOU Qi-xing. Antibiotic resistance genes(ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae, 2008, 28(8):1499-1505.
[3]  Jensen L, Baloda S, Boye M, et al. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil[J]. Environment International, 2001, 26(7):581-587.
[4]  Rysz M, Alvarez P. Amplification and attenuation of tetracycline resistance in soil bacteria:Aquifer column experiments[J]. Water Research, 2004, 38(17):3705-3712.
[5]  Smalla K, Heuer H, Gotz A, et al. Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids[J]. Applied and Environmental Microbiology, 2000, 66(11):4854-4862.
[6]  Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in Northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450.
[7]  Salyers A A, Gupta A, Wang Y P. Human intestinal bacteria as reservoirs for antibiotic resistance genes[J]. Trends in Microbiology, 2004, 12(9):412-416.
[8]  Shea K. Antibiotic resistance:What is the impact of agricultural uses of antibiotics on children\'s health?[J]. Pediatrics, 2003, 112:253-258.
[9]  Tello A, Austin B, Telfer T. Selective pressure of antibiotic pollution on bacteria of importance to public health[J]. Environmental Health Perspectives, 2012, 120(8):1100.
[10]  Allen H, Donato J, Wang H, et al. Call of the wild:Antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology, 2010, 8(4):251-259.
[11]  Wiener P, Egan S, Wellington E. Evidence for transfer of antibiotic resistance genes in soil populations of streptomycetes[J]. Molecular Ecology, 1998, 7(9):1205-1216.
[12]  Xi C W, Zhang Y L, Marrs C F, et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems[J]. Applied and Environmental Microbiology, 2009, 75(17):5714-5718.
[13]  Zhang X X, Zhang T, Fang H. Antibiotic resistance genes in water environment[J]. Applied Microbiology and Biotechnology, 2009, 82(3):397-414.
[14]  Tamminen M, Karkman A, Lohmus A, et al. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure[J]. Environmental Science & Technology, 2010, 45(2):386-391.
[15]  Zhang Y, Zhang C, Parker D B, et al. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons[J]. Science of the Total Environment, 2013, 463:631-638.
[16]  Joy S R, Li X, Snow D D, et al. Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage[J]. Science of the Total Environment, 2014, 481:69-74.
[17]  Cabello F. Heavy use of prophylactic antibiotics in aquaculture:A growing problem for human and animal health and for the environment[J]. Environmental Microbiology, 2006, 8(7):1137-1144.
[18]  McManus P, Stockwell V, Sundin G, et al. Antibiotic use in plant agriculture[J]. Annual Review of Phytopathology, 2002, 40(1):443-465.
[19]  Singer R, Finch R, Wegener H, et al. Antibiotic resistance-the interplay between antibiotic use in animals and human beings[J]. The Lancet Infectious Diseases, 2003, 3(1):47-51.
[20]  Smith D, Harris A, Johnson J, et al. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria[J]. Proceedings of the National Academy of Sciences, 2002, 99(9):6434-6439.
[21]  Furushita M, Shiba T, Maeda T, et al. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates[J]. Applied and Environmental Microbiology, 2003, 69(9):5336-5342.
[22]  Isaacson R, Torrence M. Role of antibiotics in agriculture[R]. American Academy of Microbiology, 2002.
[23]  王丽梅, 罗 义, 毛大庆, 等. 抗生素抗性基因在环境中的传播扩散及抗性研究方法[J]. 应用生态学报, 2010, 21(4):1063-1069. WANG Li-mei, LUO Yi, MAO Da-qing, et al. Transport of antibiotic resistance genes in environment and detection methods of antibiotic resistance[J]. Journal of Applied Ecology, 2010, 21(4):1063-1069.
[24]  闫书海. 畜禽养殖废水/粪便中典型抗药基因的调查研究[D]. 杭州:浙江大学, 2013. YAN Shu-hai. Research on representative antibiotic resistance genes in livestock lagoons and manures[D]. Hangzhou:Zhejiang University,2013.
[25]  Li Y W, Mo C H, Zhao N, et al. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 2009, 30(6):1762-1766.
[26]  Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833.
[27]  Pallecchi L, Bartoloni A, Paradisi F, et al. Antibiotic resistance in the absence of antimicrobial use:Mechanisms and implications[J]. Expert Review of Anti-Infective Therapy, 2008, 6(5): 725-732.
[28]  Akinbowale O, Peng H, Barton M. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia[J]. Journal of Applied Microbiology, 2007, 103(5):2016-2025.
[29]  Srinivasan V, Nam H M, Sawant A A, et al. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils[J]. Microbial Ecology, 2008, 55(2):184-193.
[30]  周启星, 罗 义, 王美娥. 抗生素的环境残留, 生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251. ZHOU Qi-xing, LUO Yi, WANG Mei-e. Environmental residues and ecotoxicity of antibiotic and their resistance gene pollution[J]. Asian Journal of Ecotoxicity, 2007, 2(3):243-251.
[31]  Boxall A B, Fogg L A, Blackwell P A, et al. Veterinary medicines in the environment[M]. Reviews of environmental contamination and toxicology. Berlin: Springer. 2004:1-91.
[32]  Ben W, Qiang Z, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2008, 1202(2):173-180.
[33]  Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011, 14(3):236-243.
[34]  Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998.
[35]  Martínez J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887):365-367.
[36]  Séveno N, Kallifidas D, Smalla K, et al. Occurrence and reservoirs of antibiotic resistance genes in the environment[J]. Reviews in Medical Microbiology, 2002, 13(1):15-27.
[37]  Schmitt H, Stoob K, Hamscher G, et al. Tetracyclines and tetracycline resistance in agricultural soils:Microcosm and field studies[J]. Microbial Ecology, 2006, 51(3):267-276.
[38]  Ji X L, Shen Q H, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China[J]. Journal of Hazardous Materials, 2012, 235:178-185.
[39]  Cheng W, Chen H, Su C, et al. Abundance and persistence of antibiotic resistance genes in livestock farms:A comprehensive investigation in Eastern China[J]. Environment International, 2013, 61:1-7.
[40]  Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 2010, 44(18):6933-6939.
[41]  邹世春, 李 青, 贺竹梅. 禽畜养殖场土壤抗生素抗性基因污染的初步研究[J]. 中山大学学报, 2012, 51(6):87-91. ZOU Shi-chun, LI Qing, HE Zhu-mei. A Preliminary study on the tetracycline resistance genes in the livestock soil, South China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6):87-91.
[42]  Munir M, Xagoraraki I. Levels of antibiotic resistance genes in manure, biosolids, and fertilized soil[J]. Journal of Environmental Quality, 2011, 40(1):248-255.
[43]  Salyers A, Amabile-Cuevas C. Why are antibiotic resistance genes so resistant to elimination?[J]. Antimicrobial Agents and Chemotherapy, 1997, 41(11):2321.
[44]  He Y, Xie K, Xu P, et al. Evolution of microbial community diversity and enzymatic activity during composting[J]. Research in Microbiology, 2013, 164(2):189-198.
[45]  Tang J C, Kanamori T, Inoue Y, et al. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method[J]. Process Biochemistry, 2004, 39(12):1999-2006.
[46]  Blanc M, Marilley L, Beffa T, et al. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular(16S rDNA) methods[J]. FEMS Microbiology Ecology, 1999, 28(2):141-149.
[47]  Selvam A, Zhao Z, Wong J. Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin[J]. Bioresource Technology, 2012, 126:412-417.
[48]  Guan J, Wasty A, Grenier C, et al. Influence of temperature on survival and conjugative transfer of multiple antibiotic-resistant plasmids in chicken manure and compost microcosms[J]. Poultry Science, 2007, 86(4):610-613.
[49]  李吉进, 郝晋珉, 邹国元, 等. 高温堆肥碳氮循环及腐殖质变化特征研究[J]. 生态环境, 2004, 13(3):332-334. LI Ji-jin, HAO Jin-min, ZOU Guo-yuan, et al. Carbon and nitrogen circulation and humus characteristics of high-temperature composting[J]. Ecology and Environment, 2004, 13(3):332-334.
[50]  黄懿梅, 曲 东, 李国学. 调理剂在鸡粪锯末堆肥中的保氮效果[J]. 环境科学, 2003, 24(2):156-160. HUANG Yi-mei, QU Dong, LI Guo-xue. Effect of adding amendments on preserving nitrogen during chicken manure and saw composting[J]. Environmental Science, 2003, 24(2):156-160.
[51]  Liu W, Wei S T, Zhang J, et al. Biochar influences the microbial community structure during tomato stalk composting with chicken manure[J]. Bioresource Technology, 2014, 154:148-154.
[52]  Simujide H, Aorigele C, Wang C J, et al. Microbial activities during mesophilic composting of manure and effect of calcium cyanamide addition[J]. International Biodeterioration & Biodegradation, 2013, 83:139-144.
[53]  李 玉. 牛粪堆肥中添加石灰氮对粪肠球菌的杀灭效果及堆肥发酵影响的研究[D]. 呼和浩特:内蒙古农业大学, 2011. LI Yu. The effcet of adding lime nitrogen to cattle manure compost on the killing effect of enterococcus faecalis and composting[D]. Hohhot:Inner Mongolia Agricultural University, 2011.
[54]  李 远. 我国畜禽养殖业的环境影响与管理政策初探[J]. 中国生态农业学报, 2002, 10(2):136-138. LI Yuan. Preliminary studies of management of livestock pollution in China[J]. Chinese Journal of Eco-Agriculture, 2002, 10(2):136-138.
[55]  Liu J, Xu X H, Li H T, et al. Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost[J]. Biomass and Bioenergy, 2011, 35(8):3433-3439.
[56]  胡 菊, 秦 莉, 吕振宇, 等. VT 菌剂对鸡粪堆肥的微生物指标变化的影响[J]. 农业环境科学学报, 2006, 25(1):214-218. HU Ju, QIN Li, Lü Zhen-yu, et al. Effect of microbiological indexes of chicken manure composting with inoculation of VT microbes[J]. Journal of Agro-Environment Science, 2006, 25(1):214-218.
[57]  Wakase S, Sasaki H, Itoh K, et al. Investigation of the microbial community in a microbiological additive used in a manure composting process[J]. Bioresource Technology, 2008, 99(7):2687-2693.
[58]  牛明芬, 赵明梅, 郭 睿, 等. 不同微生物菌剂对畜禽粪便堆肥效果的温度指标研究[J]. 环境保护与循环经济, 2010(5):51-52. NIU Ming-fen, ZHAO Ming-mei, GUO Rui, et al. Research of temperature indicators during livestock manure composting with inoculation of microbial agents[J]. Environmental Protection and Recycling Economy, 2010(5):51-52.
[59]  Chen J, Yu Z, Michel F, et al. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems[J]. Applied and Environmental Microbiology, 2007, 73(14):4407-4416.
[60]  Selvam A, Xu D, Zhao Z, et al. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure[J]. Bioresource Technology, 2012, 126:383-390.
[61]  Graves A, Liwimbi L, Israel D, et al. Distribution of ten antibiotic resistance genes in E. coli isolates from swine manure, lagoon effluent and soil collected from a lagoon waste application field[J]. Folia Microbiologica, 2011, 56(2):131-137.
[62]  Norman A, Hansen L, Sorensen S. Conjugative plasmids:Vessels of the communal gene pool[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1527):2275-2289.
[63]  Rhodes G, Huys G, Swings J, et al. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments:Implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A[J]. Applied and Environmental Microbiology, 2000, 66(9):3883-3890.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133