全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细菌强化修复电子废弃物污染农田土壤研究

DOI: 10.11654/jaes.2015.04.015

Keywords: 电子废弃物 重金属 耐受细菌 农田土壤 强化修复

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过富集、驯化、分离,从清远市电子废弃物拆解区污染土壤中得到四种耐性菌株,经菌落形态、扫描电镜分析以及16S rDNA技术鉴定得出菌株HS-01、JH-02、YB-03、JY-04分别为海水芽孢八叠球菌(Sporosarcina aquimarina)、佐吕间湖生芽孢八叠球菌(Sporosarcina saromensis)、巨大芽孢杆菌(Bacillus megaterium)、甲基营养型芽孢杆菌(Bacillus methylotrophicus)。选取非矿山型东南景天(Sedum alfredii)为实验植物,在温室盆栽实验条件下,强化修复模拟的Cd、Cu、Pb污染土壤。结果显示添加细菌JH-02的东南景天地上部重金属提取量相对最高,JY-04次之,均显著高于其他各组(P<0.05);重金属形态分析显示细菌JH-02与JY-04对土壤重金属的活化作用相对最好,可交换态含量明显高于其他两种细菌组与未加菌组(P<0.05)。实验结果表明,JH-02与JY-04这两种细菌可能通过代谢活动产生的分泌物溶解了土壤中重金属,最终促进了东南景天的提取以及根部重金属向茎叶中转移,可达到强化修复的效果,具有一定的应用前景

References

[1]  张朝阳, 彭平安, 刘承帅, 等. 华南电子垃圾回收区农田土壤重金属污染及其化学形态分布[J]. 生态环境学报, 2012, 21(10):1742-1748.ZHANG Chao-yang, PENG Ping-an, LIU Cheng-shuai, et al. Heavy metal contaminations and chemical speciation of farmland soils in an e-waste recycling town in South China[J]. Ecology and Environmental Sciences, 2012, 21(10):1742-1748.
[2]  周 翠, 杨祥田, 何贤彪. 电子垃圾拆解区周边农田土壤重金属污染评价[J]. 浙江农业学报, 2012, 24(5):886-890.ZHOU Cui, YANG Xiang-tian, HE Xian-biao. Heavy metal pollution assessment of farmland soil influenced by e-waste disassembling[J]. Acta Agriculturae Zhejiangensis, 2012, 24(5):886-890.
[3]  Liu L, Hua L L, Tang J J, et al. Food safety assessment of planting patterns of four vegetable-type crops grown in soil contaminated by electronic waste activities[J]. Journal of Environmental Management, 2012, 93(1):22-30.
[4]  郭勇勇. 电子垃圾拆解区重金属及多环芳烃宫内暴露对胎儿生长发育的影响[D]. 汕头:汕头大学, 2010.GUO Yong-yong. In utero exposure to heavy metals, polycyclic aromatic hydrocarbons and effects on neonates\' health in an e-waste recycling area[D]. Shantou:Shantou University, 2010.
[5]  张 闻, 陈贯虹, 高永超, 等. 石油和重金属污染土壤的微生物修复研究进展[J]. 环境科学与技术, 2012, 35(增刊):174-181.ZHANG Wen, CHEN Guan-hong, GAO Yong-chao, et al. Remediation of oil and heavy metal-polluted soils with microorganisms[J]. Environmental Science & Technology, 2012, 35(Suppl):174-181.
[6]  杨 卓. Cd、Pb、Zn污染潮褐土的植物修复及其强化技术研究[D]. 保定:河北农业大学, 2009:1-20.YANG Zhuo. Studies on enhanced techniques of phytoremediating cinnamon soil contaminated with cadmium, lead and zine[D]. Baoding:Hebei Agricultural University, 2009:1-20.
[7]  Rajkumar M, Sandhya S, Prasad M N V, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnology Advances, 2012, 30(6):1562-1574.
[8]  张 溪, 周爱国, 甘义群, 等. 金属矿山土壤重金属污染生物修复研究进展[J]. 环境科学与技术, 2010, 33(3):106-112.ZHANG Xi, ZHOU Ai-guo, GAN Yi-qun, et al. Advances in bioremediation technologies of contaminated soils by heavy metal in metallic mines[J]. Environmental Science & Technology, 2010, 33(3):106-112.
[9]  Tamer A, Sibel T. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(Ⅱ) and Cu(Ⅱ) ions from an aqueous solution[J]. Bioresource Technology, 2006, 97(15):1780-1787.
[10]  Zhang Z H, Zed R, Chang H, et al. Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons(PAHs)[J]. Geoderma, 2006, 175(3):1-8.
[11]  靳治国. 耐铅锡菌株的筛选及其在污染土壤修复中的应用[D]. 重庆:西南大学, 2010.JIN Zhi-guo. Screening of heavy metal-tolerant atrains and their application to the remediation of contaminated soil[D]. Chongqing:Southwest University, 2010.
[12]  Seulki J, Hee S M, Kyoungphile N, et al. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium(Cd) from polluted soil[J]. Chemosphere, 2012, 88(2):204-210.
[13]  Rosa R, Isabel C. Enzymatic activity in the rhizosphere of Spartina maritima:Potential contribution for phytoremediation of metals[J]. Marine Environmental Research, 2008, 65(1):77-84.
[14]  杨 倩. 微生物提高植物修复砷污染土壤的效果和机理研究[D]. 武汉:华中农业大学, 2009.YANG Qian. The role of microorganisms in improving the phytoremediation of arsenic polluted soils and its mechamisms[D]. Wuhan:Huazhong Agricultural University, 2009.
[15]  关松荫. 土壤酶及其研究方法[M]. 北京:农业出版社, 1986:260-338.GUAN Song-yin. Soils enzyme and research methods[M]. Beijing:Agriculture Press, 1986:260-338.
[16]  龙新宪, 王艳红, 刘洪彦. 不同生态型东南景天对土壤中Cd的生长反应及吸收积累的差异性[J]. 植物生态学报, 2008, 32(1):168-175.LONG Xin-xian, WANG Yan-hong, LIU Hong-yan, et al. Groth response and uptake differences between two ecotypes of Sedum alfredii to soils Cd[J]. Journal of Plant Ecology(Chinese Version), 2008, 32(1):168-175.
[17]  孙乐妮. 铜耐性植物内生和根际细菌的生物多样性及其强化植物富集铜的研究[D]. 南京:南京农业大学, 2009.SUN Le-ni. Biodiversity of endophytic and rhizosphere bacteria from copper-tolerant plant species and their effects on copper accumulation of plants[D]. Nanjing:Nanjing Agricultural University, 2009.
[18]  Ma Y, Prasad M N V, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2):248-258.
[19]  张艳峰. 金属耐性植物内生细菌对油菜耐受与富集重金属的影响及其机制研究[D]. 南京:南京农业大学, 2011.ZHANG Yan-feng. The effects of endophytic bacteria isolated from metal tolerant-plants on the tolerances and accumulation of heavy metals by Brassica napus[D]. Nanjing:Nanjing Agricultural University, 2011.
[20]  何 冰. 东南景天对铅的耐性和富集特性及其对铅污染土壤修复效应的研究[D]. 杭州:浙江大学, 2003.HE Bing. Lead tolerance and accumulation in Sedum alfredii hance and its effects on remediation of the lead contaminated soil[D]. Hangzhou:Zhejiang University, 2003.
[21]  Zhang X C, Lin L, Chen M Y, et al. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance[J]. Journal of Hazardous Materials, 2012, 229(3):361-370.
[22]  李廷强, 朱 恩, 杨肖娥, 等. 超积累植物东南景天根际土壤酶活性研究[J]. 水土保持学报, 2007, 21(3):112-117.LI Ting-qiang, ZHU En, YANG Xiao-e, et al. Studies on soil enzyme activity in rhizosphere of hyperaccumulator Sedum alfredii Hance[J]. Journal of Soil and Water Conservation, 2007, 21(3):112-117.
[23]  Qiong L G, Gao R T, Xi B D, et al. Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities[J]. Agricultural Water Management, 2014, 135(4):100-108.
[24]  贺玉晓, 赵同谦, 刘刚才, 等. 采煤沉陷区土壤重金属含量对土壤酶活性的影响[J]. 水土保持学报, 2012, 26(1):214-218.HE Yu-xiao, ZHAO Tong-qian, LIU Gang-cai, et al. Influence of heavy metal contents on the activities of soil enzyme in coal mining subsided area[J]. Journal of Soil and Water Conservation, 2012, 26(1):214-218.
[25]  高秀丽, 邢维芹, 冉永亮, 等. 重金属积累对土壤酶活性的影响[J]. 生态毒理学报, 2012, 7(3):331-336.GAO Xiu-li, XING Wei-qin, RAN Yong-liang, et al. Effects of accumulation of heavy metals in soils on enzyme activities[J]. Asian Journal of Ecotoxicology, 2012, 7(3):331-336.
[26]  Ni W Q, Chen Y W, Huang Y, et al. Hair mercury concentrations and associated factors in an electronic waste recycling area, Guiyu, China[J]. Environmental Research, 2014, 128(1):84-91.
[27]  Zhang Q, Ye J J, Chen J Y, et al. Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China[J]. Environmental Pollution, 2014, 185(4):258-265.
[28]  Wu C F, Luo Y M, Deng S P, et al. Spatial characteristics of cadmium in topsoils in a typical e-waste recycling area in Southeast China and its potential threat to shallow groundwater[J]. Science of the Total Environment, 2014, 472(15):556-561.
[29]  袁剑刚, 郑 晶, 陈森林, 等.中国电子废物处理处置典型地区污染调查及环境、生态和健康风险研究进展[J]. 生态毒理学报, 2013, 8(4):473-486.YUAN Jian-gang, ZHENG Jing, CHEN Sen-lin, et al. Advances in the research on pollution investigations and environmental, ecological and health risks from e-waste recycling activities in China[J]. Asian Journal of Ecotoxicology, 2013, 8(4):473-486.
[30]  王家嘉. 废旧电子产品拆解对农田土壤复合污染特征及其调控修复研究[D]. 贵阳:贵州大学, 2008.WANG Jia-jia. The characteristics of combined pollution and regulatory research of discarded electronic products in farmland soils[D]. Guiyang:Guizhou University, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133