曲 晨, 刘 伟, 荣海钦, 等.纳米银的生物学特性及其潜在毒性的研究进展[J]. 环境与健康杂志, 2010, 27(9):842-845.QU Chen, LIU Wei, RONG Hai-qin, et al. Research advance on biological features and toxicities of silver nanoparticles[J]. Environment and Health, 2010, 27(9):842-845.
[2]
高雯雯, 兰新哲, 宋永辉, 等.化学法制备形态可控纳米银的研究进展的研究[J]. 贵金属, 2009, 30(2):64-65.GAO Wen-wen, LAN Xin-zhe, SONG Yong-hui, et al. Research and development in preparation of shape-controlled silver nanoparticles by chemical methods[J]. Precious Metals, 2009, 30(2):64-65.
[3]
Maynard A D, Aitken R J, Butz T, et al. Safe handling of nanotechnology[J]. Nature, 2006, 444(7117):267-269.
[4]
Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials(TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environmental Science and Technology, 2009, 43(24):9216-9222.
[5]
Auffan M, Rose J, Wiesner M R, et al. Chemical stability of metallic nanoparticles:A parameter controlling their potential cellular toxicity in vitro[J]. Environmental Pollution, 2009, 157(4):1127-1133.
[6]
Feng Y Z, Cui X C, He S Y, et al. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth[J]. Environmental Science and Technology, 2013, 47(16):9496-9504.
[7]
Mathias H, Christoph E. Effects of silver nanoparticles on the microbiota and enzyme activity in soil[J]. Plant Nutrition and Soil Science, 2010, 173(4):554-558.
[8]
Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J]. Environmental Science and Technology, 2008, 42(12):4583-4588.
[9]
Hwang E T, Lee J H, Chae Y J, et al. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria[J]. Small, 2008, 4(6):746-750.
[10]
Liau S Y, Read D C, Pugh W J, et al. Interaction of silver nitrate with readily identifiable groups relationship to the antibacterial action of silver ions[J]. Letters in Applied Microbiology, 1997, 25(4):279-283.
[11]
Feng Q L, Wu J, Chen C Q, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. Journal of Biomedical Materials Research, 2000, 52(4):662-668.
[12]
林道辉, 冀 静, 田小利, 等.纳米材料的环境行为与生物毒性[J].科学通报, 2009, 54(23):3590-3604.LIN Dao-hui, JI Jing, TIAN Xiao-li, et al. Environmental behavior and toxicity of engineered nanomaterials[J]. Chinese Science Bulletin, 2009, 54(23):3590-3604.
[13]
Ruffini C M, Cremonini R. Nanoparticles and higher plants[J]. Caryologia, 2009, 62(2):161-165.
[14]
Dimkpa C O, McLean J E, Martineau N, et al. Silver nanoparticles disrupt wheat(Triticum aestivum L.) growth in a sand matrix[J]. Environmental Science and Technology, 2013, 47(2):1082-1090.
[15]
Hernandez-Viezcas J A, Castillo-Michel H, Andrews J C, et al. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean(glycine max)[J]. ACS Nano, 2013, 7(2):1415-1423.
[16]
Barrena R, Casals E, Colón J, et al. Evaluation of the ecotoxicity of model nanoparticles[J]. Chemosphere, 2009, 75(7):850-857.
[17]
El-Temsah Y S, Joner E J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil[J]. Environmental Toxicology, 2012, 27(1):42-49.
[18]
Stampoulis D, Sinha S K, White J C. Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environmental Science and Technology, 2009, 43(24):9473-9479.
[19]
Jiang H S, Li M, Chang F Y, et al. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza[J]. Environmental Toxicology and Chemistry, 2012, 31(8):1880-1886.
[20]
Yin L Y, Cheng Y W, Espinasse B, et al. More than the ions:The effects of silver nanoparticles on Lolium multiflorum[J]. Environmental Science and Technology, 2011, 45(6):2360-2367.
[21]
Mazumdar H, Ahmed G. Phytotoxicity effect of silver nanoparticles on Oryza sativa[J]. International Journal of ChemTech Research, 2011, 3(3):1494-1500
[22]
Zhu H, Han J, Xiao J Q, et al. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants[J]. Environmental Monitoring, 2008, 10(6):713-717.
[23]
Krishnaraj C, Jagan E G, Ramachandran R, et al. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri(Linn.) Wettst. plant growth metabolism[J]. Process Biochemistry, 2012, 47(4):651-658.
[24]
唐海明, 汤文光, 肖小平, 等. 冬种黑麦草对6种水稻土重金属含量及晚稻不同器官重金属累积与分配的影响[J]. 作物学报, 2012, 38(6):1121-1126.TANG Hai-ming, TANG Wen-guang, XIAO Xiao-ping, et al. Effects of winter ryegrass planting on soil heavy metal content and accumulation and distribution in different organs of late rice in six paddy soils[J]. Acta Agronomica Sinca, 2012, 38(6):1121-1126.
[25]
王 晨, 王海燕, 赵 琨, 等. 硅对镉、锌、铅复合污染土壤中黑麦草生理生化性质的影响[J]. 生态环境, 2008, 17(6):2240-2245.WANG Chen, WANG Hai-yan, ZHAO Kun, et al. Effects of silicon on physiological and biochemical properties of ryegrass under the compound pollution of Cd, Zn and Pb[J]. Ecology and Environment, 2008, 17(6):2240-2245.
[26]
王震宇, 于晓莉, 高冬梅, 等.人工合成纳米TiO2 和MWCNTs对玉米生长及其抗氧化系统的影响[J]. 环境科学, 2010, 31(2):480-487.WANG Zhen-yu, YU Xiao-li, GAO Dong-mei, et al. Effect of nano-rutile TiO2 and multiwalled carbon nanotubes on the growth of maize(Zea mays L.) seedlings and the relevant antioxidant response[J]. Environment Science, 2010, 31(2):480-487
叶 润, 刘芳竹, 刘 剑, 等.微波消解-电感耦合等离子体发射光谱法测定大米中铜、锰、铁、锌、钙、镁、钾、钠8 种元素[J].食品科学, 2014, 35(6):117-120.YE Run, LIU Fang-zhu, LIU Jian, et al. Determination of contents of Cu, Mn, Fe, Zn, Ca, Mg, K and Na in rice using microwave digestion and inductively coupled plasma-optical emission spectrometry[J]. Food Science, 2014, 35(6):117-120.
[29]
高向阳, 王银娟, 卢 彬. 微波消解-连续光源原子吸收法快速顺序测定枸杞果中的6 种金属元素[J]. 食品科学 2011, 32(16):229-232.GAO Xiang-yang, WANG Yin-juan, LU Bin. Microwave digestion and continuum source atomic absorption spectrometric determination of six metal elements in medlar(Mespilus germanica L.) Fruit[J]. Food Science, 2011, 32(16):229-232.
[30]
方金梅, 应朝阳, 黄毅斌, 等. 铝胁迫对决明属水土保持牧草幼苗根系的影响[J]. 中国水土保持, 2003(7):30-32.FANG Jin-mei, YING Chao-yang, HUANG Yi-bin, et al. Effects of aluminum force to the root system of herbage seedlings of Chamaecrista spp. for soil and water conservation[J]. Soil and Water Conservation in China, 2003(7):30-32.
[31]
何翠萍, 王慧忠. 重金属镉、铅对草坪植物根系代谢和叶绿素水平的影响[J]. 湖北农业科学, 2003(5):60-63.HE Cui-ping, WANG Hui-zhong. Effect of cadmium and lead on the roots metabolizm and chlorophyll of lawn plant[J]. Hubei Agricultural Sciences, 2003(5):60-63.
[32]
Aina R, Labra M, Fumagalli P, et a1. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots[J]. Environmental and Experimental Botany, 2007, 59(3):381-392.
[33]
林仁漳, 杜文超, 王晓蓉, 等.土壤外源Cd胁迫对小麦幼苗生长自由基代谢及抗氧化酶活性的影响[J]. 农业环境科学学报, 2008, 27(1):23-29.LIN Ren-zhang, DU Wen-chao, WANG Xiao-rong, et al. Free radical metabolism and response of antioxidant enzymes in wheat seedlings(Triticum aestivum L.) exposed to soil cadmium[J]. Agro-Environment Science, 2008, 27(1):23-29.
[34]
陆长梅, 张超英, 温俊强, 等.纳米材料促进大豆萌芽、生长的影响及其机理研究[J].大豆科学, 2002, 21(3):168-172.LU Chang-mei, ZHANG Chao-ying, WEN Jun-qiang, et al. Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism[J]. Soybean Science, 2002, 21(3):168-172.
[35]
Shah V, Belozerova I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds[J]. Water, Air, and Soil Pollution, 2009, 197(1-4):143-148.
[36]
Liu J Y, Robert H. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science and Technology, 2010, 44(6):2169-2175.
[37]
Oberd?rster E. Manufactured nanomaterials(Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass[J]. Environmental Health Perspect, 2004, 112(10):1058-1062.
[38]
Hsin Y, Chen C, Huang S, et al. The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells[J]. Toxicology Letters, 2008, 179(3):130-139.
[39]
Li N, Xia T, Nel A E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles[J]. Free Radical Biology and Medicine, 2008, 44(9):1689-1699.
[40]
Reeves J F, Davies S J, Dodd N J F, et al. Hydroxyl radicals(·OH) are associated with titanium dioxide(TiO2) nanoparticle induced cytotoxicity and oxidative DNA damage in fish cells[J]. Mutation Research, 2008, 640(1-2):113-122.
[41]
Sayes C M, Gobin A M, Ausman K D, et al. Nano-C60 cytotoxicity is due to lipid peroxidation[J]. Biomaterials, 2005, 26(36):7587-7595.
[42]
Vitoria A P, Rodriguez A P M, Cunha M, et al. Structural changes in radish seedlings exposed to cadmium[J]. Biologia Plantarum, 2003, 47(4):561-568.
[43]
Geisler-Lee J, Wang Q, Yao Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana[J]. Nanotoxicology, 2013, 7(3):323-337
[44]
Gubbins E J, Batty L C, Lead J R. Phytotoxicity of silver nanoparticles to Lemna minor L.[J]. Environmental Pollution, 2011, 159(6):1551-1559.
[45]
Musante C, White J C. Toxicity of silver and copper to Cucurbita pepo:Differential effects of nano and bulk-size particles[J]. Environmental Toxicology, 2012, 27(9):510-517.
[46]
Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa[J]. The Science of the Total Environment, 2009, 407(19):5243-5246.