全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长期施肥下水稻土有机碳固持形态与特征

DOI: 10.11654/jaes.2015.04.021

Keywords: 有机碳 组分 稳定机制 水稻土 土壤碳固定

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于为期30年的红壤性水稻土长期定位试验,选用不施肥(CK)、化肥氮磷钾配施(NPK)、NPK配施低量有机肥(NPKM7/3)、NPK配施中量有机肥(NPKM5/5)、NPK配施高量有机肥(NPKM3/7)五个处理,通过物理-化学联合分组方法,分析土壤有机碳在不同施肥处理下的非保护、物理、化学、生化、物理-化学及物理-生化保护组分的碳含量特征及其与土壤总有机碳之间的关系,并探讨稻田土壤有机碳的固持机制。结果表明,除了非保护的轻组和微团聚体内闭蓄态的粘粉粒组分外,其他组分的质量比例在各施肥处理间均有显著性差异。有机无机配施(NPKM7/3、NPKM5/5、NPKM3/7)下,总有机碳含量(19.1~25.0 g·kg-1)、非保护的粗颗粒有机碳(cPOM)含量(8.41~12.7 g·kg-1)及物理保护的微团聚体有机碳(6.41~6.62 g·kg-1)含量均显著高于CK处理(P<0.05)。对化学、生化、物理-化学及物理-生化保护态的有机碳含量无显著性影响,表明非保护的cPOM及物理保护的微团聚体(μagg)对施肥的响应最敏感。相关分析表明,cPOM、物理保护的μagg及其闭蓄的细颗粒有机碳(iPOM)与土壤总有机碳含量之间呈显著正相关关系(P<0.05),相关方程的斜率表明有机碳变化引起了组分变化,其中:土壤总有机碳变化引起的cPOM变化率最高(50%);土壤总有机碳积累引起物理保护的μagg及其闭蓄的iPOM碳组分变化率为12%;生化保护的非酸解粘粒和物理-化学保护的酸解的粉粒虽与土壤总有机碳显著相关,其变化率仅为2%~3%;其他各保护机制下的组分与土壤总有机碳含量均无显著相关关系。这表明在现行种植和管理制度下,供试红壤性水稻土有机碳主要以cPOM及μagg有机碳的形式积累,土壤化学、生化、物理-化学及物理-生化保护碳组分可能已经达到平衡

References

[1]  解宪丽, 孙 波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报, 2004, 41(5):687-699.XIE Xian-li, SUN Bo, ZHOU Hui-zhen, et al. Soil carbon stocks and their influencing factors under native vegetations in China[J]. Acta Pedologica Sinica, 2004, 41(5):687-699.
[2]  Zhang W J, Xu M G, Wang X J, et al. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China[J]. Journal of Soils and Sediments, 2012, 12(4):457-470.
[3]  Zhang H M, Xu M G, Shi X J, et al. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in Southern China[J]. Nutrient Cycling in Agroecosystems, 2010, 88(3):341-349.
[4]  Parham J A, Deng S P, Da H N, et al. Long-term cattle manure application in soil. Ⅱ. Effect on soil microbial populations and community structure[J]. Biological and Fertility of Soils, 2003, 38(4):209-215.
[5]  佟小刚, 徐明岗, 张文菊, 等. 长期施肥对红壤和潮土颗粒有机碳含量与分布的影响[J]. 中国农业科学, 2008, 41(11):3664-3671.TONG Xiao-gang, XU Ming-gang, ZHANG Wen-ju, et al. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China[J]. Scientia Agricultura Sinica, 2008, 41(11):3664-671.
[6]  张国荣, 李菊梅, 徐明岗, 等. 长期不同施肥对水稻产量及土壤肥力的影响[J]. 中国农业科学, 2009, 42(2):543-551.ZHANG Guo-rong, LI Ju-mei, XU Ming-gang, et al. Effects of chemical fertilizer and organic manure on rice yield and soil fertility[J]. Scientia Agricultura Sinica, 2009, 42(2):543-551.
[7]  潘根兴, 李恋卿, 郑聚锋, 等. 土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J]. 土壤学报, 2008, 45(5):910-914.PAN Gen-xing, LI Lian-qing, ZHENG Ju-feng, et al. Perspectives on cycling and sequestration of organic carbon in paddy soils of China[J]. Acta Pedologica Sinica, 2008, 45(5):910-914.
[8]  Six J, Paustian K, Elliott E T, et al. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2):681-689.
[9]  武云天, 李凤民. 土壤有机质概念和分组技术研究进展[J]. 应用生态学报, 2004, 15(4):717-722.WU Yun-tian, LI Feng-min, Concepts and relative analytical techniques of soil organic matter[J]. Chinese Journal of Applied Ecology, 2004, 15(4):717-722.
[10]  Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2):155-176.
[11]  Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science, 2001, 52(3):345-353.
[12]  Stewart C E, Plante A F, Paustian K, et al. Soil carbon saturation:Linking concept and measurable carbon pools[J]. Soil Science Society of America Journal, 2008, 72(2):379-392.
[13]  周 萍, 宋国菡, 潘根兴, 等. 南方三种典型水稻土长期试验下有机碳积累机制研究:I. 团聚体物理保护作用[J]. 土壤学报, 2008, 45(6):1063-1071.ZHOU Ping, SONG Guo-han, PAN Gen-xing, et al. SOC accumulation in three major types of paddy soils under long-term agro-ecosystem experiments from South China: Ⅰ. Physical protection in soil micro-aggregates[J]. Acta Pedologica Sinica, 2008, 45(6):1063-1071.
[14]  Gulde S, Chung H, Amelung W, et al. Soil carbon saturation controls labile and stable carbon pool dynamics[J]. Soil Science Society of America Journal, 2008, 72(3):605-612.
[15]  侯红乾, 刘秀梅, 刘光荣, 等. 有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响[J]. 中国农业科学, 2011, 44(3):516-523.HOU Hong-qian, LIU Xiu-mei, LIU Guang-rong, et al, Effect of long-term located organic-inorganic fertilizer application on rice yield and soil fertility in red soil area of China[J]. Scientia Agricultura Sinica, 2011, 44(3):516-523.
[16]  Gregorich E G, Ellert B H, Drury C F. Fertilization effects on soil organic matter turnover and corn residue C storage[J]. Soil Sci Soc Am J, 1996, 60(2): 472-476.
[17]  Whalen J K, Chang C. Macroaggregate characteristics in cultivated soils after 25 annual manure applications[J]. Soil Sci Soc Am J, 2002, 66(5): 1637-1647.
[18]  Plante A F, Chenu C, Balabane M, et al. Peroxide oxidation of clay-associated organic matter in a cultivation chronosequence[J]. European Journal of Soil Science, 2004, 55(3):471-478.
[19]  潘根兴, 李恋卿, 郑聚锋, 等. 土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J]. 土壤学报, 2008, 45(5):901-914.PAN Gen-xing, LI Lian-qing, ZHENG Ju-feng, et al. Perspectives on cycling and sequestration of organic carbon in paddy soils of China[J]. Acta Pedologica Sinica, 2008, 45(5):901-914.
[20]  Solberg E D, Nyborg M, Izairralde R C, et al. Carbon storage in soils under continuous cereal grain cropping:N fertilizer and straw[J]. Management of Carbon Sequestration in Soil, 1998:235-254.
[21]  郜欢欢. 农田管理措施和土地利用方式对土壤分组碳库及其饱和行为的影响[D]. 北京:中国农业大学, 2012.GAO Huan-huan. Effects of cropland management and land-use change on soil fraction carbon pool and their saturation behaviors[D].Beijing:China Agricultural University, 2012.
[22]  Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation:Implications for measurable carbon pool dynamics in long-term incubations[J]. Soil Biology and Biochemistry, 2009, 41(2):357-366.
[23]  Chung H, Ngo K J, Plante A, et al. Evidence for carbon saturation in a highly structured and organic-matter-rich soil[J]. Soil Science Society of America Journal, 2010, 74(1):130-138.
[24]  李昌新, 黄 山, 彭现宪, 等. 南方红壤稻田与旱地土壤有机碳及其组分的特征差异[J]. 农业环境科学学报, 2009, 28(3):606-611.LI Chang-xin, HUAGN Shan, PENG Xian-xian, et al, Differences in soil organic carbon fractions between paddy field and upland field in red soil region of South China[J]. Journal of Agro-Environment Science, 2009, 28(3):606-611.
[25]  Six J, Feller C, Denef K, et al. Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage[J]. Agronomie, 2002, 22(7-8):755-775.
[26]  Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles[J]. Plant and Soil, 1997, 191(1):77-87.
[27]  Plante A F, Conant R T, Stewart C E, et al. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions[J]. Soil Science Society of America Journal, 2006, 70(1):287-296.
[28]  Amelung W, Flach K W, Zech W. Lignin in particle-size fractions of native grassland soils as influenced by climate[J]. Soil Science Society of America Journal, 1999, 63(5):1222-1228.
[29]  Kiem R, Kogel-Knabner I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils[J]. Soil Biology & Biochemistry, 2003, 35(1):101-118.
[30]  Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation:Concept, evidence and evaluation[J]. Biogeochemistry, 2007, 86(1):19-31.
[31]  Zheng J, Li L, Pan G, et al. Potential aerobic C mineralization of a red earth paddy soil and its temperature dependence under long-term fertilizer treatments[J]. Soil Use and Management, 2012, 28(2):185-193.
[32]  Liu D Y, Ding W X, Jia Z J, et al. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China[J]. Biogeosciences, 2011, 8(2):329-338.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133