全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非抗虫转基因棉花对土壤细菌群落多样性的影响

DOI: 10.11654/jaes.2015.04.016

Keywords: v转基因棉花 土壤微生物 PCR-DGGE 细菌多样性

Full-Text   Cite this paper   Add to My Lib

Abstract:

田间试验条件下,为了探究非抗虫转基因棉花对土壤细菌群落多样性的影响,应用PCR-DGGE技术对转RRM2基因高产棉、转GAFP基因抗病棉、转ACO2基因优质棉及非转基因常规棉(中棉所12)种植后在吐絮期的土壤细菌群落多样性进行分析。结果表明,与常规棉相比,3种转基因棉的种植均未对土壤细菌香农-威纳指数(H)、均匀度(EH)和丰富度(S)造成显著影响,且两类棉花土壤细菌群落结构相似性较高。可见,短期内,非抗虫转基因棉花的种植对土壤细菌群落多样性无显著影响。对DGGE的优势条带序列分析发现,同源性最高的微生物分别属于拟杆菌门(Bacteroidetes)的黄杆菌纲(Flavobacteria)、噬弧菌属(Bacteriovorax)、Segetibacter,变形菌门(Proteobacteria)的α-变形菌纲(alpha proteobacterium)、地杆菌属(Geobacter),厚壁菌门(Firmicutes)的Paenisporosarcina,酸杆菌门(Acidobacterias)的酸杆菌属(Acidobacterium),它们均为不可培养微生物

References

[1]  Iverson V, Morris R M, Frazar C D, et al. Untangling genomes from metagenomes:Revealing an uncultured class of marine euryarchaeota[J]. Science, 2012, 335:587-590.
[2]  James C. 2013年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程志, 2014, 34(1):1-8.James C. Global status of commercialized Biotech/GM Crops:2013[J]. China Biotechnology, 2014, 34(1):1-8.
[3]  雒珺瑜, 刘传亮, 张 帅, 等. 转RRM2基因棉生长势和产量及对棉田节肢动物群落的影响[J]. 植物生态学报, 2014, 38(7):785-794.LUO Jun-yu, LIU Chuan-liang, ZHANG Shuai, et al. Growth vigour and yield of transgenic RRM2(RNA recognition motif 2) cotton and their effects on arthropod community in cotton field[J]. Chinese Journal of Plant Ecology, 2014, 38(7):785-794.
[4]  陈 英, 王义琴, 诸葛强, 等. 转天麻抗真菌蛋白基因GAFP烟草的获得及离体抑菌活性检测[J]. 植物资源与环境学报, 2002, 11(2):1-5.CHEN Ying, WANG Yi-qin, ZHUGE Qiang, et al. Acquirement of tabacco with transformation genes of GAFP(Gastrodia Antifungal Protein) and evalution of antifungal activity in vitro[J]. Journal of Plant Resources and Environment, 2002, 11(2):1-5.
[5]  张 萍. 棉花乙烯合成关键基因参与细胞伸长发育的功能分析[D]. 石河子:石河子大学, 2010.ZHANG Ping. Function analysis of cotton key genes in ethylene synthesis of cell elongation[D]. Shihezi:Shihezi University,2010.
[6]  Bhatia C R. Role of Microbial diversity for soil, health and plant nutrition[M]//Nautiyal C S, Dion P. Molecular mechanisms of plant and microbe coexistence:Soil biology. Berlin Heidelberg:Springer-Verlag, 2008, 15:53-74.
[7]  Chun Y J, Kim H J, Park K W, et al. Two-year field study shows little evidence that PPO-transgenic rice affects the structure of soil microbial communities[J]. Biology and Fertility of Soils, 2012, 48(4):453-461.
[8]  Hart M M, Powell J R, Gulden R H, et al. Detection of transgenic cp4 epsps genes in the soil food web[J]. Agronomy for Sustainable Development, 2009, 29(4):497-501.
[9]  Bell T, Ager D, Song J I, et al. Larger islands house more bacterial taxa[J]. Science, 2005, 308(5730):1884.
[10]  Rosenzweig N. The importance and application of bacterial diversity in sustainable agricultural crop production ecosystems[M]//Maheshwari D K. Bacterial diversity in sustainable agriculture:Sustainable development and biodiversity. Switzerland:Springer-Verlag, 2014, 1:341-367.
[11]  俞明正, 戴濡伊, 吴季荣, 等. 转TaDREB4基因抗旱小麦对其根际土壤速效养分、酶活性及微生物群落多样性的影响[J]. 江苏农业学报, 2013, 29(5):938-945.YU Ming-zheng, DAI Ru-yi, WU Ji-rong, et al. Analysis of available nutrient, enzyme activities and microorganism community diversity in rhizospheric soil of TaDREB4 transgenic wheat with drought resistance[J]. Jiangsu Journal of Agriculture Science, 2013, 29(5):938-945.
[12]  白 朋, 张 虹, 罗 磊, 等. 转AmGS抗寒基因红叶石楠对土壤微生物的影响[J]. 安徽农学通报, 2014, 20(8):28-30.BAI Peng, ZHANG Hong, LUO Lei, et al. Impacts of transgenic Photinia×fraseri with cold-tolerant gene AmGS on soil microbes[J]. Anhui Agriculture Science Bull, 2014, 20(8):28-30.
[13]  杨志国, 赵建宁, 李 刚, 等. 耐草甘膦转基因大豆对土壤线虫多样性的影响[J]. 农业环境科学学报, 2013, 329(11):2199-2205.YANG Zhi-guo, ZHAO Jian-ning, LI Gang, et al. Effect of glyphosate-tolerant soybean on diversity of soil nematodes[J]. Journal of Agro-Environment Science, 2013, 329(11):2199-2205.
[14]  Castaldini M, Turrini A, Sbrana C, et al. Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms[J]. Applied and Environmental Microbiology, 2005, 71(11):6719-6729.
[15]  Baumgarte S, Tebbe C C. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize(MON810) and its effect on bacterial communities in the maize rhizosphere[J]. Molecular Ecology, 2005, 14(8):2539-2551.
[16]  Li P, Dong J Y, Yang S F, et al. Impact of β-carotene transgenic rice with four synthetic genes on rhizosphere enzyme activities and bacterial communities at different growth stages[J]. European Journal of Soil Biology, 2014, 65:40-46.
[17]  Hu H Y, Liu X X, Zhao Z W, et al. Effects of repeated cultivation of transgenic Bt cotton on functional bacterial populations in rhizosphere soil[J]. World Journal of Microbiology and Biotechnology, 2009, 25(3):357-366.
[18]  Saxena D, Stotzky G. Bacillus thuringiensis(Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil[J]. Soil Biology & Biochemistry, 2001, 33(9):1225-1230.
[19]  Cotta S R, Dias A C F, Marriel I E, et al. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified(GM)maize hybrids intropical agrosystems[J]. Antonie van Leeuwenhoek, 2013, 103(3):589-601.
[20]  Roesch L F W, Fulthorpe R, Riva A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. The ISME Journal, 2007, 1(4):283-290.
[21]  李海峰, 李志建, 屈建航. 解磷微生物及其应用的研究进展[J]. 贵州农业科学, 2012, 40(10):108-110.LI Hai-feng, LI Zhi-jian, QU Jian-hang. Research progress of phosphate-solubilizing microorganisms and their application[J]. Guizhou Agricultural Sciences, 2012, 40(10):108-110.
[22]  何玉龙, 周青平. 解磷微生物研究进展[J]. 青海畜牧兽医杂志, 2012, 42(2):36-38.HE Yu-long, ZHOU Qing-ping. Advance in phosphorus-dissolving microbes[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2012, 42(2):36-38.
[23]  Dey R, Pal K K, Tilak K V B R. Influence of soil and plant types on diversity of rhizobacteria[J]. Proceedings of the National Academy of Sciences, 2012, 82(3):341-352.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133