全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

玉米芯生物炭对大豆的生物学效应

DOI: 10.11654/jaes.2015.02.025

Keywords: 玉米芯 生物炭 大豆 生物学效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

以玉米芯为原材料,采用新型炭化技术制备生物炭,研究了玉米芯炭的结构及理化特性,并通过大田试验研究了玉米芯生物炭对大豆的生物学效应.结果表明,玉米芯在炭化后总孔体积、比表面积、pH、固定碳含量、灰分含量分别提高了5.54、3.74、1、5.03、0.26倍,具有丰富的微孔结构和元素种类.施用玉米芯炭后,大豆株高、地上部干物质积累提高,光合作用、营养生理以及氮、磷、钾养分吸收功能增强,产量与品质明显提高.较高施炭量(1500、3000 kg·hm-2)平均比对照增产10.98%.该玉米芯生物炭结构与理化特性良好,是一种理想的农用生物炭材料,可应用于东北大豆生产

References

[1]  孙振钧, 孙永明. 我国农业废弃物资源化与农村生物质能源利用的现状与发展[J]. 中国农业科技导报, 2006, 8(1):6-13. SUN Zhen-jun, SUN Yong-ming. Review of China agricultura science and technology situation and development of agricultural residues as energy resource utilization in rural areas in China[J]. Journal of Agricultural Science and Technology, 2006, 8(1):6-13.
[2]  Antal Jr M J, Gronli M. The art, science and technology of charcoal production[J]. Industrial and Engineering Chemistry, 2003, 42(8):1619-1640.
[3]  Lehmann J. A handful of carbon[J]. Nature, 2007, 447:143-144.
[4]  Kleiner K. The bright prospect of biochar[J]. Nature Reports-Climate Change, 2009, 3(6):72-74.
[5]  Ma?ek O, Brownsort P, Cross A, et al. Influence of production conditions on the yield and environmental stability of biochar[J]. Fuel, 2013, 103:151-155.
[6]  陈温福, 张伟明, 孟 军. 生物炭与农业环境研究回顾与展望[J]. 农业环境科学学报, 2014, 33(5):821-828. CHEN Wen-fu, ZHANG Wei-ming, MENG Jun. Advances and prospects in research of biochar utilization in agriculture[J]. Journal of Agro-Environment Science, 2014, 33(5):821-828.
[7]  Macdonald L M, Farrell M, Van Zwieten L, et al. Plant growth responses to biochar addition:An australian soils perspective find out how to access preview-only content[J]. Biology and Fertility of Soils, 2014, 50(7):1035-1045.
[8]  Liu X Y, Zhang A F, Ji C Y, et al. Biochar\'s effect on crop productivity and the dependence on experimental conditions a meta-analysis of literature data[J]. Plant and Soil, 2013, 373(1-2):583-594.
[9]  Zhao X, Wang J W, Wang S Q, et al. Successive straw biochar application as a strategy to sequester carbon and improve fertility:A pot experiment with two rice/wheat rotations in paddy soil[J]. Plant and Soil, 2014, 378(1-2):279-294.
[10]  Dong D, Yang M, Wang C, et al. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field[J]. Journal of Soils and Sediments, 2013, 13(8):1450-1460.
[11]  Partey S T, Preziosi R F, Robson G D. Short-term interactive effects of biochar, green manure, and inorganic fertilizer on soil properties and agronomic characteristics of maize[J]. Agricultural Research, 2014, 3(2):128-136.
[12]  Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of green waste biochar as a soil amendment[J]. Australian Journal of Soil Research, 2007, 45(8):629-634.
[13]  Kishimoto S, Sugiura G. Charcoal as a soil conditioner[J]. International Achievements for the Future, 1985, 5:12-23.
[14]  Iswaran V, Jauhri K S, Sen A. Effect of charcoal, coal and peat on the yield of moong, soybean and pea[J]. Soil Biology and Biochemistry, 1980, 12(2):191-192.
[15]  Steiner C, Teixeira W G, Lehmann J, et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil[J]. Plant and Soil, 2007, 291(1-2):275-290.
[16]  Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010, 333(1-2):117-128.
[17]  Glaser B, Haumaier L, Guggenberger G, et al. The "Terra Preta" phenomenon:A model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1):37-41.
[18]  鲍士旦. 土壤农化分析[M]. 北京:中国农业科技出版社, 2000:241-294. BAO Shi-dan. Agricultural soil analysis[M]. Beijing:China Agriculture Press, 2000:241-294.
[19]  李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000:130-201. LI He-sheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press, 2000:130-201.
[20]  邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准[M]. 北京:中国农业出版社, 2006:2-95. QIU Li-juan, CHANG Ru-zhen. Descriptors and data standard for soybean[M]. Beijing:China Agriculture Press, 2006:2-95.
[21]  Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Tech-nology, 2011, 102(3):3488-3497.
[22]  Joseph W J, Pignatello J J. Sorption hystersis of benzene in charcoal particles[J]. Environmental Science and Technology, 2003, 37(2):409-417.
[23]  Kramer R W, Kujawinski E B, Hatcher P G. Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science Technology, 2004, 38(12):3387-3395.
[24]  Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendment on the quality of a typical midwestern agricultural soil[J]. Geoderma, 2010, 158(3-4):443-449.
[25]  Oguntunde P G, Abiodun B J, Ajayi A E. Effects of charcoal production on soil physical properties in Ghana[J]. Joumal of Plant Nutrient and soil Science, 2008, 171(4):591-596.
[26]  张伟明, 孟 军, 陈温福, 等. 生物炭对水稻根系形态与生理特性及产量的影响[J]. 作物学报, 2013, 39(8):1445-1451. ZHANG Wei-ming, MENG Jun, CHEN Wen-fu, et al. Effect of biochar on root morphological and physiological characteristics and yield in Rice[J]. Acta Agronomica Sinica, 2013, 39(8):1445-1451.
[27]  Akhtar S S, Li G T, Andersend M N, et al. Biochar enhances yield and quality of tomato under reduced irrigation[J]. Agricultural Water Management, 2014, 138:37-44.
[28]  Robertso F A, Thorbum P J. Management of sugarcane harvest residues:Consequences for soil carbon and nitrogen[J]. Australian Journal of Soil Research, 2006, 45(1):13-23.
[29]  Sharkey T D. Advances in photosynthesis and respiration photosynthesis research[J]. Photosynthesis Research, 2012, 111:327-329.
[30]  Koch K E, Ying Z, Wu Y, et al. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism[J]. Journal of Experimental Botany, 2000, 51:417-427.
[31]  Simone E K, Kevin J F, Mathew E D. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal, 2009, 73(4):1173-1181.
[32]  Mizuta K, Matsumoto T, Hatate Y, et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Te-chnology, 2004, 95(3):255-257.
[33]  Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal:A review[J]. Biology and Fertility of Soils, 2002, 35(4):219-230.
[34]  Amymarie A D, Gschwend P M. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments[J]. Environmental Science & Technology, 2002, 36(1):21-29.
[35]  Kim J S, Sparovek G, Longo R M, et al. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon[J]. Soil Biology and Biochemistry, 2007, 39(2):684-690.
[36]  Rondon M, Lehmann, J, Ramírez J, et al. Biological nitrogen fixation by common beans(Phaseolus vulgaris L.) increases with biochar additions[J]. Biology and Fertility of Soils, 2007, 43(6):699-708.
[37]  Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil concepts and mechanisms[J]. Plant and Soil, 2007, 300(1-2):9-20.
[38]  陈温福, 张伟明, 孟 军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16):3324-3333.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133