全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

土壤镉胁迫对龙葵(Solanum nigrum L.)幼苗生长及生理特性的影响

DOI: 10.11654/jaes.2015.02.006

Keywords: 龙葵 镉 氮、磷、钾 ATP 酶活性 质膜过氧化 叶绿素

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用盆栽试验研究了不同浓度Cd(0、10、20、40、80、160 mg·kg-1)处理下,龙葵(Solanum nigrum L.)幼苗对氮(N)、磷(P)和钾(K)吸收及质膜ATPase活性的影响.结果表明, 土壤添加Cd浓度≤40 mg·kg-1时显着促进龙葵幼苗生长及生物量的积累与分配,添加Cd浓度>40 mg·kg-1时抑制作用加强;叶绿素含量随Cd添加浓度的增大而下降, 在较低浓度Cd(10 mg·kg-1)处理时,显着提高叶绿素含量.随Cd添加浓度的增加, 根、茎、叶和果实中的全N、全P和全K含量先升后降(除茎全P降低外);叶片中的Cd积累量最高, 茎次之, 果实中最低;丙二醛含量与过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性增大, 但超氧化物歧化酶(POD)活性先升后降;幼苗地上(茎与叶)和地下(根)部H+-ATP以及地下部Ca2+-ATP酶活性随Cd添加浓度的增加不断降低, 而地上部Ca2+-ATP酶活性则先升后降.这些结果表明, 龙葵在高Cd胁迫(≥40 mg·kg-1)下, 能通过加快根系对Cd离子积累来提高抗氧化酶(CAT和SOD)活性、降低POD与质膜ATP酶活性、改变对N、P 和K的吸收, 从而起到对Cd胁迫的解毒作用

References

[1]  Kudo H, Kudo H, Ambo H, et al. Cadmium sorption to plasma membrane isolated from barley roots is impeded by copper association onto membranes[J]. Plant Science, 2011, 180(2):300-305.
[2]  Janicka-Russak M, Kaba?a K, Burzyński M. Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots[J]. J Exp Bot, 2012, 63(11):4133-4142.
[3]  刘柿良, 潘远智, 马明东, 等. 外源 NO 对镉胁迫下长春花质膜过氧化、ATPase及矿质营养吸收的影响[J]. 植物营养与肥料学报, 2014, 20(2):445-458. LIU Shi-liang, PAN Yuan-zhi, MA Ming-dong, et al. Effects of exogenous NO on mineral nutrition absorption, lipid peroxidation and ATPase of plasma membrane in Catharanthus roseus tissues under cadmium stress[J]. J Plant Nutri Fert, 2014, 20(2):445-458.
[4]  Burzyński M, Kolano E. In vivo and in vitro effects of copper and cadmium on the plasma membrane H+-ATPase from cucumber(Cucumis sativus L.) and maize(Zea mays L.) roots[J]. Acta Physiol Plant, 2003, 25(1):39-45.
[5]  Xu L, Dong Y, Kong J, et al. Effects of root and foliar applications of exogenous NO on alleviating cadmium toxicity in lettuce seedlings[J]. Plant Growth Regul, 2014, 72(1):39-50.
[6]  刘柿良, 杨容孑, 潘远智, 等. 镉胁迫对长春花质膜过氧化、ATP酶及5\'-核苷酸酶活性的影响[J]. 农业环境科学学报, 2013, 32(5):916-914. LIU Shi-liang, YANG Rong-jie, PAN Yuan-zhi, et al. Effects of cadmium on lipid peroxidation, ATPase and 5\'-AMPase activity of cytomembrane in Catharanthus roseus tissues[J]. J Agro-Environ Sci, 2013, 32(5):916-914.
[7]  Wu F Z, Yang W Q, Zhang J, et al. Cadmium accumulation and growth responses of a poplar(Populus deltoids×Populus nigra) in cadmium contaminated purple soil and alluvial soil[J]. J Haza Mater, 2010, 177(1):268-273.
[8]  Ková?ik J, Babula P, Klejdus B, et al. Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue[J]. PLoS ONE, 2014, 9:e91685. DOI:10. 1371/journal. pone. 0091685.
[9]  Xu J, Wang W, Yin H, et al. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress[J]. Plant and Soil, 2010, 326(1):321-330.
[10]  Liu J G, Liang J S, Li K Q, et al. Correlation between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress[J]. Chemosphere, 2003, 52(9):1467-1473.
[11]  Wei S H, Zhou Q X, Wang X, et al. A newly discovered Cd-hyperaccumulator Solanum nigrum L[J]. Chin Sci Bull, 2004, 49(24):2568-2573.
[12]  Wang L, Zhou Q X, Ding L L, et al. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. J Haza Mater, 2008, 154(1-3):818-825.
[13]  Sun R L, Zhou Q X, Jin C X. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. Plant and Soil, 2006, 285(1):125-134.
[14]  李合生, 孙 群, 赵世杰. 植物生理生化试验原理和技术[M]. 北京:高等教育出版社, 2000. LI He-sheng, SUN Qun, ZHAO Shi-jie. Theory and technique of plant physiological and biochemical experiments[M]. Beijing:Higher Education Press, 2000.
[15]  Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology, 1992, 98(4):1222-1227.
[16]  Patterson B D, MacRae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium(Ⅳ)[J]. Analytical Biochemistry, 1984, 139(2):487-492.
[17]  Wang Y, Sze H. Similarities and differences between the tonoplast-type and the mitochondrial H+-ATPase of oat roots[J]. J Biol Chem, 1985, 260(19):10434-10443.
[18]  缪 颖, 曹家树, 将有条, 等. 大白菜干烧心病发生过程中Ca2+-ATPase 活性的变化[J]. 园艺学报, 1998, 25(1):51-55. MIAO Ying, CAO Jia-shu, JIANG You-tiao, et al. Changes of Ca2+-ATPase activity in inner leaves during the development of tipburn in Chinese cabbage[J]. Acta Horticulturae Sinica, 1998, 25(1):51-55.
[19]  Benavides M, Gallego S, Tomaro M. Cadmium toxicity in plants[J]. Braz J Plant Physiol, 2005, 17(1):21-34.
[20]  刘俊祥, 孙振元, 勾 萍, 等. 镉胁迫下多年生黑麦草的光合生理响应[J]. 草业学报, 2012, 21(3):191-197. LIU Jun-xiang, SUN Zhen-yuan, GOU Ping, et al. Response of photosynthetic physiology of perennial ryegrass(Lolium perenne) to Cd2+ stress[J]. Acta Prataculture Sinica, 2012, 21(3):191-197.
[21]  汤叶涛, 关丽捷, 仇荣亮, 等. 镉对超富集植物滇苦菜抗氧化系统的影响[J]. 生态学报, 2010, 30(2):324-332. TANG Ye-tao, GUAN Li-jie, QIU Rong-liang, et al. Antioxidative defense to cadmium in hyperaccumulator Picris divaricata V.[J]. Acta Ecologica Sinica, 2010, 30(2):324-332.
[22]  Liu S L, Yang R J, Ma M D, et al. Effects of exogenous NO on the growth, mineral nutrient content, antioxidant system, and ATPase activities of Trifolium repens L. plants under cadmium stress[J]. Acta Physiologiae Plantarum, 2015, 37(1):1721-1723.
[23]  Gonzaga M I S, Santos J A G, Ma L Q. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils:Repeated harvests and arsenic redistribution[J]. Environ Pollut, 2008, 154(8):212-218.
[24]  易自成, 贺俊波, 程 华, 等. 镉对皇竹草构件生长及生理特性的影响[J]. 农业环境科学学报, 2014, 33(2):276-282. YI Zi-cheng, HE Jun-bo, CHENG Hua, et al. Effects of Cd polluted soil on the modular growth and physiological characteristics of Pennisetum hydridum[J]. J Agro-Environ Sci, 2014, 33(2):276-282.
[25]  丁继军, 潘远智, 刘柿良, 等. 外源AsA对土壤重金属镉胁迫下石竹(Dianthus chinensis)幼苗生长的影响[J]. 农业环境科学学报, 2013, 32(8):1520-1528. DING Ji-jun, PAN Yuan-zhi, LIU Shi-liang, et al. Effects of exogenous AsA on the growth of Dianthus chinensis seedlings under soil Cd stress[J]. J Agro-Environ Sci, 2013, 32(8):1520-1528.
[26]  Zhang X, Gao B, Xia H. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass[J]. Ecotox Environ Safety, 2014, 106(5):102-108.
[27]  Sakuraba Y, Rahman M L, Cho S H, et al. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions[J]. Plant J, 2013, 74(1):122-133.
[28]  邵国胜, 谢志奎, 张国平. 杂草稻和栽培稻氮代谢对镉胁迫反应的差异[J]. 中国水稻科学, 2006, 20(2):189-193. SHAO Guo-sheng, XIE Zhi-kui, ZHANG Guo-ping. Different responses to cadmium stress in nitrogen metabolism between weedy rice and cultivated rice(Oryza sativa)[J]. Chin J Rice Sci, 2006, 20(2):189-193.
[29]  Pankovic D, Plesnicar M, Arsenijevic M I, et al. Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants[J]. Ann Bot, 2000, 86(4):841-847.
[30]  Mishra S, Srivastava S, Tripathi R D, et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L.[J]. Plant Physiol Biochem, 2006, 44(2):25-37.
[31]  Broadley M R, Escobar-Gutiérrez A J, Burns A. What are the effects of nitrogen deficiency on growth components of lettuce?[J]. New Phytol, 2000, 147(3):519-526.
[32]  Kaba?a K, Janicka-Russak M, Burzyński M, et al. Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells[J]. J Plant Physiol, 2008, 165(2):278-288.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133