[15]Toro J E, Newkirk G F. Aquatic living resources/Ressources vivantes aquatiques. Nantes, 1991, 4(2): 101-108
[2]
[16]Toro J E, Aguila P, Vergara A M, et al. Realized heri- tability estimates for growth from data on tagged Chilean native oyster (Ostrea chilensis). World Aquaculture, 1994, 25(2): 29-30
[3]
[17]Losee E. Influence of heredity on larval and spat growth in Proceeding of the ninth annual meeting, World mariculture Society, 1978, 101-107
[4]
[18]Newkirk G F, Hahley L E, Wuagh D L, et al. Genetics of larvae and spat growth rate in the oyster, Crassostrea virginica. Mar Biol, 1977, 41: 49-52
[5]
[19]Newkirk G F. Review of the genetics and the potencial for selective breeding of commercially important bivalves. Aquaculture, 1980, 19:209-228
[6]
[20]Allen Sk J, Gaffney P M. Cooperative oyster breeding project. Journal of Shellfish Research, 1998,17(4): 230-235
[22]Yang Hongsheng, Zhang Tao, Wang Jian, et al. Growth characteristics of Chlamys farreri and its relation with environmental factors in intensive raft-culture areas of Sishiliwan Bay, Yantai. Journal of Shellfish Research, 1999, 18(1): 71-76
[9]
[23]Fang Jian-guang, Sun Hui-ling, Yan Jing-ping, et al. Polyculture of scallop Chlamys farreri and kelp Lami- naria japonica in Sungo Bay. Chinese Journal of Oceanology and Limnology. 1996, 14( 4): 322-329
[10]
[25]Newkirk G F, Haley L E. Progress in selection for growth rate in European oyster Ostrea edulis. Mar Ecol Progr Ser, 1982, 10:77-79
[11]
[26]Ruzzante D E, Newkirk G F. Selection for growth rate in the European oyster, Ostrea edulis: A multivariate approach. genetics in aquaculture III. Aquaculture, 1990, 85, 1-4
[12]
[27]Lannan J E. Estimating heritability and predicting response to selection for the Pacific oyster, Crassostrea gigas. Proc Natl Shellfish Assoc, 1972, 62:62-66
[13]
[28]Langdon C J, Jacobson D P, Evans F, et al. The molluscan broodstock program -improving Pacific oyster broodstock through genetic selection. Journal of Shellfish Research, 2000, 19(1): 616
[14]
[29]Davis C V. Estimation of narrow-sense heritability for larval and juvenile growth traits in selected and unselected sub-lines of eastern oysters, Crassostrea virginica. Journal of Shellfish Research, 2000, 19(1): 613
[15]
[30]Jarayabhand P, Thavornyutikarn M. Realized heritability estimation on growth rate of oyster, Saccostrea cucullata Born, 1778. Aquaculture, 1995, 138:111-118
[16]
[31]Innes D J, Hadley L E. Genetic aspects of larval growth under reduced salinity in Mytilus edulis. Bio Bull, 1977, 153: 312-321
[17]
[32]Newkirk G F. Interaction of genotype and saltinity in larvae of the oyster Crassostrea virginica. Mar Biol, 1978, 48: 227-234
[18]
[33]Mallet A L, Freeman K R, Dickie L M. The genetics of production characters in the blue mussel Mytilus edulis 1,A preliminary analysis. Aquaculture, 1986, 57:133-140
[19]
[34]Brichette I, Reyero M I, Garcia C. A genetic analysis of intraspecific competition for growth in mussel cultures. Aquaculture, 2001, 192(2-4):155-169
[20]
[35]Haskin H H, Ford S E. Breeding for disease resistance in mollusks. World Symp. On selection, hybridization and genetic engineering in aquaculture. France: Bordeaux, 1987. 431-441
[21]
[36]Beattie J H, Chew K K, Hershberger W K. Differential survival of selected strains of Pacific oyster (Crassostrea gigas) during summer mortality. Proc Natl, Shellfish Assoc, 1980, 70:184-189
[22]
[37]Falconer D S. Introduction to Quantitative Genetics. 2nd ed. London:Longman Press, 1981.65-90
[23]
[38]Kincaid H L. Inbreeding in rainbow trout (Salmo gaird- neri). J Fish Res Board Can, 1976, 33:2 420-2 426
[24]
[39]Gjerde B, Gunnes K, Gjedrem T. Effect of inbreeding on mortality and growth in rainbow trout. Aquaculture, 1983, 31:256-264
[25]
[1]Wilkins N P. The rationale and relevance of genetics in aquaculture: a review. Aquaculture, 1981, 22:209-228
[26]
[2]Newkirk G B. Applied breeding of commercially important molluscs: asummary of discussion. Aquaculture, 1983, 33: 415-422
[27]
[3]Cunninghan E B. Current developments in the genetics of livestock improvement. Anim Blood Groups Biochem Genet, 1976,7:191-200
[28]
[4]Robertson A. Biochemical polymorphism in animal im- provement. Proceedings of the European Conference on Anim. Blood Groups Biochem Genet, 1966.544
[29]
[5]Mayr E. Animal species and evolution. Cambridge, MA: Harvard University Press. 1963. 797
[30]
[6]Manwell C, Baker C M A. Molecular Biology and the Origin of Species. London:Sidgwick and Jackson, 1970. 394
[31]
[7]Wada K T. Genetic selection for shell traits in Japanese pear oyster, Pinctada fucata martensi. Aquaculture, 1986, 57: 171-176
[32]
[8]Wada K T. Aquaculture genetics of bivalve molluscs: a review. 青岛海洋大学学报 , 2000, 30(1):107-114
[33]
[9]Chanley P E. Inheritance of shell marking and growth in the hard clam, Mercenaria mercenaria. Proc Atl Shellfish Assoc, 1961, 50: 163-169
[34]
[10]Gallivan T, Allen S. The clam breeding project: Building a better clam. The Virginia Institute of Marine Science: the first annual Northeast Aquaculture Conference and Exposi- tion, 1998. 76
[35]
[11]Hadley N H, Dillon R T Jr, Manzi J J. Realized heritability of growth rate in the hard clam Mercenaria mercenaria. Aquaculture, 1991, 93:109-119
[36]
[12]Hershberger W K, Perdue J A, Beattie J H. Genetic se- lection and systematic breeding in pacific oyster culture. Aquaculture, 1984, 39:237-245
[37]
[13]Crenshaw J W Jr, Heffernan P B, Walker R L. Heritability of growth rate in the southern Bay scallop, Argopecten irra- dians concentricus. Journal of Shellfish Research, 1991, 10(1): 55-63
[38]
[14]Toro J E, Newkirk G F. Divergent selection for growth rate in the European oyster Ostrea edulis: Response to selection and estimation of genetic parameters. Marine ecology progress series. MAR ECOL, 1990, 62(3): 219-227
[39]
[24]Rawson P D, Hilbish T J. Heritability of juvenile growth for the hard clam Mercenaria mercenaria. Marine Biology, 1990, 105(3): 429-436
[40]
[40]Metter L E, Gregg T G. Population Genetics and Evolution. New Jersey, NJ (U S A): Prentice-Hill, 1963. 212