[1]Lamkey K R, EdwardsJ W. The quantiative genetics of heterosis[A]. Coors J G, Pandey S. Proceedings of the International Symposium on the Genetics and Exploitation of heterosis in Crops[C]. Mexico City, Mexico:CIMMYT, 1999.31 - 48.
[2]
[2]卢兴挂,顾铭洪,李成荃,等.两系杂交水稻理论与技术[M].北京:科学出版社,2001.9.
[3]
[3]Hhussmann B I G. Hybrid performance and relationship among morphological and physiological trait of sorghum[Sorghum bicolor (L.) Moench]under variable drought stress in Kenya[J]. Plant Breeding, 1998, 117: 223-229.
[4]
[4]Shull G H. The composition of field maize[J ]. RePort of the American Breeders Association, 1908(4) :296-301.
[5]
[5]Davenport C B. Dominance as the major genetic basis of heterosis in rice [J ]. Science, 1908, 28: 454 - 455.
[6]
[6]Hull F H. Recurrent selection for specific conbining ability in com[J]. J Am Soc Agron, 1945, 37: 134-145.
[7]
[7]Lamkey K R, Edwards J W. Heterosis: theory and estimation[A]. Proceedings 34th Illinois Corn Breeders\'School, Urbana, IL, 2-3 Mar. 1998[C]. Urbana:University of Illinois, 62 - 77.
[8]
[8]Stuber C W, LincolnSE, WolffDW, etal. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J].Genetics, 1992, 132 (3): 823- 39.
[9]
[9]Cockerham C C, Zeng, Z B. Design Ⅲ with marker loci [J]. Genetics, 1996,143:1 437 -1 456.
[10]
[10]Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J].Proc Natl Acad Sci USA, 1997,94:9 226- 9 231.
[11]
[11]Pressoir G, Albar L, Ahmadi N, et al, Genetic basis and mapping of the resistance to rice yellow mottle virus Ⅱ. evidence of a complementary epistasis between two QILs[J]. Theor Appl Genet, 1998,97:1 155- 1 161.
[12]
[12]Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice I. biomass and grain yield[J]. Genetics, 2001,158:1 737- 1 753.
[13]
[13]Lto L J, Li Z K, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice Ⅱ. grain yield components[J]. Genetics, 2001,158:1 755-1 771.
[15]Xiao J S , Yuan D, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics, 1995,140:745 - 754.
[16]
[16]Tanksley S D, Monforte A J. Fine mapping of quanti tative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic trits: Breaking linking among QTLs affecting different traits and dissection of heterosis for yield[J ]. Theor App Genet, 2000, 100:471 - 479.
[17]
[17]Graham G I, Wolff D W, Stuber C W. Characterization of a yield quantitative trait locus on chromosome 5 of maize by fine mapping[J]. Crop Sci, 1997, 37:1 601 -1 610.
[18]
[18]Budak H . Understanding heterosis [J ]. KSU J Science and Engineering, 2002, 52(2): 68 - 75.
[19]
[19]Wright S. Evolution and the genetics of population 3.experimental results and evolutionary deductions[M]. Chicago, IL: The University of Chicago Press,1977. 613.
[20]
[20]Henry C M, Washington E. Genetic maekers such as single - nucleotide poplymorphims amy lead to per sonalized medicines for a wide variety of diseases[J].Pharmacogenomics, 2001,79 (33): 37- 42.
[21]
[21]Hedgecock D. A genetic linkage map of 100 microsatellite markers for the Pacific oyster Crassostrea gigas [J ].Journal of Shellfish Research, 2002, 21 (1): 381.
[25]Allard R W . Implications of genotype - environment interactions in applied plant breeding[J]. Crop Sci,1964(4): 503- 508.
[26]
[26]Sax K. The association of size defference with seed - coat pattern and pigmentation in Phaseolus ulgaris [J ].Genetics, 1923(8): 552- 560.
[27]
[27]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative trait using RFLP linkage maps[J].Genetics, 1989, 121:185 - 199.
[28]
[28]Ma C X, Casella G, Wu R . Functional mapping of quantitative trait loci underlying the character process:a theoretical framework[J]. Genetics, 2002,161:1751-1762..
[30]Godsha[k E B , Lee M, Lamkey K R. Relationship of restriction fragment length polymorphisms to single - cross hybrid performance of maize[J]. Theor App Genet,1990,80:273 - 280.
[31]
[31]Melchinger A E, Utz H F, Schon C C. Genetic diversity for restriction fragment length polymorphisms and its rela tionship to genetic effects estimated from generation means in four sets of maize inbreds[J]. Crop Sei, 1990,30:1033 -1040.
[32]
[32]Zhang Q, Saghai Maroof MA, Yang G P, et al. Relationships between molecular marker polymorphism and hybrid performance in rice[A] .Khush G S. The Proceed ings of the Third International Rice Genetic Symposium[C].[S.I.]: [S.n]. 1996. 317-325.
[33]
[33]Lee M, Sharopova N, Beavis W D, et al. Expanding the genetic map of maize with the intermated B73 × M017(IBM) population[J ]. Plant Mol Biol, 2002, 48: 453 -461.
[34]
[34]Vuylsteke M , Kuiper M, Stam P. Chrmosomal regions involved in hybrid performance and heterosis: their AFLP - based identification and practical use in prediction models[J ]. Heredity, 2000, 86: 208 - 218.
[35]
[35]今井丈夫.浅海完全养殖[M].日本:恒星社厚生阁版,1961.
[36]
[36]Zouros E , Singh S M , Foltz DW,et al. The use of allelic isozyme variation for the study of heterosis[A].Rattazi M C. Isozymes: Current Topic in Biological and Medical Research[C]. New York:Liss, 1987. 1 - 59.
[37]
[37]Hedgecock D, MaGoldrickDJ, BayneBL. Hybrid vigor in Pacific oysters: an experimental approach using crosses among inbred lines[J]. Aquaculture, 1995, 137:285-298.
[38]
[38]Hedgecock D, MaGoldrickDJ, Manahan DT. Quantitative and molecular genetic analysis of heterosis in bivalve mollusks[J]. J Exp Mar Biol Ecol, 1996,203: 49 - 59.
[39]
[39]Bayne BL, Hedgecock D, Mcgoldrick D, etal . Feeding between and metabolic efficiency contribute to growth heterosis in Pacific oyster [Crassostrea gigas (Thunberg) ][J]. J Exp Mar Biol Ecol, 1999, 233: 115- 130.