[17]Miki Y, Yuichi N, Lina L, et al. Changes in the micro- bial community in Japan Trench sediment from a depth of 6296 m during cultivation without decompression[J]. FEMS Microbiology Letters,1999,170: 271- 279.
[2]
[18]Huber R, Huber H, Setter K O. Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties[J]. FEMS MicrobiologyReview,2000,24:615- 625.
[6]Carol T. Bacteria in the cold deep- sea benthic boundary layer and sediment- water interface of the NE Atlantic[J]. FEMS Microbiology Ecology, 2000,33: 89- 99.
[9]
[7]Danovaro R, Dell′ anno A, Pusceddu A, et al. Nucleic acid concentrations (DNA, RNA) in the continental and deep- sea sediments of the eastern Mediterranean: rela- tionships with seasonally varying organic inputs and bac- terial dynamics[J]. Deep- Sea Research Ⅰ , 1999,46:1 077- 1 094.
[11]Roberto D, Antonio D, Mauro F, et al. Deep- sea ecosystem response to climate changes: the eastern Mediterranean case study[J]. TRENDS in Ecology Evolution, 2001, 16:505- 510.
[13]Rutger D W, Jean C R, Thierry B, et al. Microbialrespiration and diffusive oxygen uptake of deep- sea sediments in the Southern Ocean(ANTARES- I Cruise)[J]. Deep- sea Research Ⅱ, 1997,44, 1 053- 1 065.
[16]
[14]Marcus E, Erwin S, Jens G, et al. Archaea mediating anaerobic methane oxidation in deep- sea sediments at cold seeps of the eastern Aleutian subduction zone[J]. Organic Geochemistry, 2000,31: 1 175- 1 187 .
[17]
[15]Volker T, Jorn P, Hans H, et al. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat[J]. Marine chemistry,2000, 73: 97- 112.
[18]
[16]John P. A relationship between deep- sea benthic oxygen demand and oceanic primary produc- tivity[J]. Oceanologica Acta, 2000, 23:65- 82.