[2]Sun X, Griffith M, Pasterank J J, et al. Low temperature growth, freezing survival, and production of antifreeze pro- tein by the plant growth promoting rhizobacterium Pseu- domonas putida GR12- 2[J]. Can J Microbiol, 1995,41(9):776- 784.
[3]
[3]Rymond J A, Sullivan C W. Release of an ice- active substance by Antarctic sea ice diatoms[J]. Polar Biol, 1994,14:71- 75.
[4]
[4]Medicharla V, Jagannadham M K. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum[J]. Archives of Microbiology, 2001,173(5- 6):418- 424.
[5]
[5]Chattopadhyay M K, Jagannadham M V, Vairamani M, et al. Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus: Temperature dependent biosynthesis, structure, and interaction with synthetic membranes[J]. Biochemical and Biophysical Research Communications,1997,239: 85- 90.
[6]
[6]Shivaji. Bacteria and yeast of Schirmacher Oasis, Antarc- tic; Taxonomy, biochemistry and molecular biology[J]. Proc NIRP Symp Polor Biol, 1994,7:173- 184.
[7]
[7]Fong N J C, Burgess M L, Barrow K D, et al. Carotenoid accumulation in the psychrotrophic bacterium Arthorbacter agilis in response to thermal and salt stress[J]. Appl Microbiol Biotechnol,2001, 56 :750- 756.
[10]McConville M J. Chemical composition and biochemistry of sea ice microalgae[A]. Horner RA. Sea Ice Biota[C]. Boca Raton Florida: CRC Press,1985.105- 130.
[11]
[11]Nagashima H. Characterization and habitats of bacteria and yeasts isolated from Lake Vanda in Antarctica[J]. Proc NIPR Symp Polar Biol,1990,3:190- 200.
[12]
[12]Nichols D S, Russsell N J. Fatty acid adaptation in an Antarctic bacterium- changes in primer utilization[J]. Microbiology, 1996,142:747- 754.
[13]
[13]Nichols D S, Nichols P D, McMeekin T A. Anaerobic production of polyunsaturated fatty acids by Shewanella putrefaciens strain ACAM 342[J]. FEMS Microbiol Lett, 1992,125:281- 286.
[14]
[14]Nichols D S, Nichols P D, McMeekin T A. A new n- C31:9 polyene hydrocarbon from Antarctic bacteria[J]. FEMS Microbiol Lett, 1992,98:117- 122.
[15]
[15]Nichols D S, Nichols PD, McMeekin T A. Polyunsatu- rated fatty acid in Antarctic bacteria[J].Antarctic Science,1993,5(2):149- 160.
[16]
[16]Fukunaga N. Effects of temperature and salt on lipid and fatty acid compositions of a bacterium isolated from the bottom layer of Lake Vanda[J]. Antarctica J Gen Appl Microbiol, 1995,41(3):191- 205.
[17]
[17]Bowman J P, McCammon S A, Brown M V, et al. Di- versity and association of psychrophilic bacteria inAntarctic sea ice[J]. Appl Environ Microbiol,1997,63: 3 068- 3 078.
[18]
[18]David S, Tom A. Biomaker techniques to screen for bac- teria that produce polyunsaturated fatty acids[J]. Journal of Microbiological Methods,2002,48: 161- 170.
[19]
[19]David S, Nichols P H. Enrichment of the rotifer Bra- chionus plicatilis fed an Antarctic bacterium containing polyunsaturated fatty acids[J]. Aquaculture,1996,147 :115- 125.
[20]
[20]Nila W J. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms[J]. Phycol, 1997, 33(2):215.
[21]
[21]HADER DP. Effects of increased solar ultraviolet radiation on aquatic ecosystem[J]. Ecol, 1999, 80(2):223.
[22]
[22]RAIL C. Algal responses to enhanced ultraviolet- B. Proceedings of the India National Science Academy Part B[J]. Biological Science,1998, 64(2):125.
[23]
[23]Newman S J,Dunlap W C, Nicol S, et al. Antarctic krill (Euphausia superba) acquire a UV- absorbing my- cosporine- like amino acid from dietary algae[ J]. J Exp Mar Bio Ecol, 2000, 255:93- 110.
[24]
[24]Smith R C, Prezelin B B, Baker K S, et al. Ozone de- pletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters[J]. Science,1992,255:952- 959.
[25]
[25]Riegger L, Robinson D. Photoinduction of UV- absorbing compounds in Antarctic diatomas and Phaeocystis An- tarctica[J]. Mar Ecol Prog Ser,1997,160: 13- 25.
[26]
[26]Garcia- Pichel F, Castenholz R W. Occurrence of UV- absorbing,mycosporine- like compounds among cyano- bacterial isolates and an estimate of their screening capa- city[J]. Applied and Environmental Microbiology,1993,59:163- 169.
[27]
[27]Karentz D, McEuen F S. Survey of mycosporine- like amino acid compounds in Antarctic marine organism: potential protection from ultraviolet exposure[J]. Marine Biology,1991,108:157- 166.
[28]
[28]Xiong F S, Kopecky J I. The occurrence of UV- absorb- ing mycosporine- like amino acids in freshwater and terrestrial microalgae(Chlorophyta)[J]. Aquatic Botany,1999,63:37- 49.
[29]
[29]Hader D P, Worrest R C. Effects of enhanced solar ultra- violet radiation on aquatic ecosystems[J]. Photochem Photobiol, 1991,53:717- 725.
[30]
[30]Groniger A, Hader DP. Introduction of the synthesis of an UV- absorbing substance in the green algae Prasiola stipitata[J]. Journal of Phytochemistry and photobi- ology B.Biology, 2002,66:54- 59.
[31]
[31]Karentz D, Mc Euen F S, Land M C, et al. Survey of mycosporine- like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure[J]. Marine Biology, 1991, 108:157- 166.
[32]
[32]Marchant H J, Davidson A T, Kelly G J. UV- B pro- tecting compounds in the marine alga Phaeocystis pouchetii from Antarctic[J]. Marine Biology, 1991,109:391- 395.
[33]
[33]Jennifer H, Skerrat A D. Effect of UV- B on lipid content of three Antarctic marine phytoplankton[J]. Phytochemistry, 1998,49:4 999- 5 007.
[36]Alison L G, Alistair W M, Pedro O M. Tolerance of Antarctic cyanobacterial mats to enhanced UV radiation[J]. FEMS Microbiology Ecology,2001,37:91.
[37]
[37]Peter D N, Jennifer H S, Andrew D, et al. Lipids of cultured Phaeocystis pouchetii: Signatures for food- web, biogeochemical and environmental studies in Antarctica and the Southern ocean[J]. Phytochem, 1991,30:3 209.
[38]
[38]Krinsky N I. Antioxidant functions of carotenoids[J]. Free Radic Biol Med,1989,7:617- 635.
[39]Berker- Hapak M, Troxtel E, Hoeter J, et al. RPOS dependent overexpression of carotenoids from Erwinia - herbicola in OXYR- deficient Escherichia coli[J]. Biochem Biophys Res Comun, 1997,239:305- 309.
[41]
[41]Dawid W. Psychrophilic myxobacteria from Antarctic soil[J]. Polarforschung, 1988:58(2/3): 271- 278.
[42]
[42]Hellio C, Bremer G, Pons A M, et al. Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France[J]. Appl Microbiol Biotechnol,2000,54:543- 549.
[47]Okuyama H. Identification and characterization of a 9- cis- hexadecenoic acid cis- tran isomerase from a psy- chrotrophic bacterium, Pseudomonas sp. strain E- 3[J]. Proc NIPR Symp Polar Biol,1997,10:153- 162.
[48]
[48]Tsigos I, Velonia K, Smonou I, et al. Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophlie Monraella sp.TAE123[J].Euro- pean J Biochem,1998,254(2):356- 362.
[49]
[49]Di- Fraia R, Wilquet V, Ciardiello M A,et al. NAD+- dependent glutamate dehydrogenase in the Antarctic psy- chrotolerant bacterium Psychrobacter sp. TAD1 Characte- rization, protein and DNA sequence, and relationship to other glutamate dehydrogenases[J]. European J Biochem, 2000,267(1):121- 131.
[50]
[50]Camardella L, Di Fraia R, Antignani A, et al. The Antarctic Psychrobacter sp. TAD1 has two cold- active glutamate dehydrogenases with different cofactor specifici- ties. Characterization of the NAD+- depe ndent enzyme[J]. Comparative Biochemistry and Physiology Part A,2002,131:559- 567.
[54]Feller G, Dominique D′ Amico, Gerday C. Thermodynamic stability of a cold- active α- amylose from the Antarctic bacterium, Alteromona shaloplanctis[J]. Biochemistry,1999,38(14):613- 619.
[55]
[55]Bentahir M, Feller G, Aittaleb M, et al. Structural, kinetic, and calorimetric characterization of the cold- active phosphoglycerate kinase from the Antarctic Pseu- domonas sp. TACⅡ 18[J]. J Bio Chem, 2000, 275(15):11,147- 153.