全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
海洋科学  2004 

极地微生物活性物质研究进展

, PP. 58-63

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  [1]曾胤新 ,陈波 . 90年代日本等国家极区微生物学研究及其指导思想 [J]. 微生物学杂志 ,1999,19(4):35- 43.
[2]  [2]Sun X, Griffith M, Pasterank J J, et al. Low temperature growth, freezing survival, and production of antifreeze pro- tein by the plant growth promoting rhizobacterium Pseu- domonas putida GR12- 2[J]. Can J Microbiol, 1995,41(9):776- 784.
[3]  [3]Rymond J A, Sullivan C W. Release of an ice- active substance by Antarctic sea ice diatoms[J]. Polar Biol, 1994,14:71- 75.
[4]  [4]Medicharla V, Jagannadham M K. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum[J]. Archives of Microbiology, 2001,173(5- 6):418- 424.
[5]  [5]Chattopadhyay M K, Jagannadham M V, Vairamani M, et al. Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus: Temperature dependent biosynthesis, structure, and interaction with synthetic membranes[J]. Biochemical and Biophysical Research Communications,1997,239: 85- 90.
[6]  [6]Shivaji. Bacteria and yeast of Schirmacher Oasis, Antarc- tic; Taxonomy, biochemistry and molecular biology[J]. Proc NIRP Symp Polor Biol, 1994,7:173- 184.
[7]  [7]Fong N J C, Burgess M L, Barrow K D, et al. Carotenoid accumulation in the psychrotrophic bacterium Arthorbacter agilis in response to thermal and salt stress[J]. Appl Microbiol Biotechnol,2001, 56 :750- 756.
[8]  [8]侯旭光 ,李光友 ,姜英辉 ,等 .南极冰藻 (硅藻 )细胞质中无机离子的变化与低温适应性的关系 [J]. 高技术通讯 ,2002,6:96- 100.
[9]  [9]侯旭光 ,姜英辉 ,缪锦来 ,等 . 南极冰藻的总脂含量及脂肪酸组成与其低温适应性的关系 [J]. 黄渤海海洋 ,2002,20(1):47- 53.
[10]  [10]McConville M J. Chemical composition and biochemistry of sea ice microalgae[A]. Horner RA. Sea Ice Biota[C]. Boca Raton Florida: CRC Press,1985.105- 130.
[11]  [11]Nagashima H. Characterization and habitats of bacteria and yeasts isolated from Lake Vanda in Antarctica[J]. Proc NIPR Symp Polar Biol,1990,3:190- 200.
[12]  [12]Nichols D S, Russsell N J. Fatty acid adaptation in an Antarctic bacterium- changes in primer utilization[J]. Microbiology, 1996,142:747- 754.
[13]  [13]Nichols D S, Nichols P D, McMeekin T A. Anaerobic production of polyunsaturated fatty acids by Shewanella putrefaciens strain ACAM 342[J]. FEMS Microbiol Lett, 1992,125:281- 286.
[14]  [14]Nichols D S, Nichols P D, McMeekin T A. A new n- C31:9 polyene hydrocarbon from Antarctic bacteria[J]. FEMS Microbiol Lett, 1992,98:117- 122.
[15]  [15]Nichols D S, Nichols PD, McMeekin T A. Polyunsatu- rated fatty acid in Antarctic bacteria[J].Antarctic Science,1993,5(2):149- 160.
[16]  [16]Fukunaga N. Effects of temperature and salt on lipid and fatty acid compositions of a bacterium isolated from the bottom layer of Lake Vanda[J]. Antarctica J Gen Appl Microbiol, 1995,41(3):191- 205.
[17]  [17]Bowman J P, McCammon S A, Brown M V, et al. Di- versity and association of psychrophilic bacteria inAntarctic sea ice[J]. Appl Environ Microbiol,1997,63: 3 068- 3 078.
[18]  [18]David S, Tom A. Biomaker techniques to screen for bac- teria that produce polyunsaturated fatty acids[J]. Journal of Microbiological Methods,2002,48: 161- 170.
[19]  [19]David S, Nichols P H. Enrichment of the rotifer Bra- chionus plicatilis fed an Antarctic bacterium containing polyunsaturated fatty acids[J]. Aquaculture,1996,147 :115- 125.
[20]  [20]Nila W J. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms[J]. Phycol, 1997, 33(2):215.
[21]  [21]HADER DP. Effects of increased solar ultraviolet radiation on aquatic ecosystem[J]. Ecol, 1999, 80(2):223.
[22]  [22]RAIL C. Algal responses to enhanced ultraviolet- B. Proceedings of the India National Science Academy Part B[J]. Biological Science,1998, 64(2):125.
[23]  [23]Newman S J,Dunlap W C, Nicol S, et al. Antarctic krill (Euphausia superba) acquire a UV- absorbing my- cosporine- like amino acid from dietary algae[ J]. J Exp Mar Bio Ecol, 2000, 255:93- 110.
[24]  [24]Smith R C, Prezelin B B, Baker K S, et al. Ozone de- pletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters[J]. Science,1992,255:952- 959.
[25]  [25]Riegger L, Robinson D. Photoinduction of UV- absorbing compounds in Antarctic diatomas and Phaeocystis An- tarctica[J]. Mar Ecol Prog Ser,1997,160: 13- 25.
[26]  [26]Garcia- Pichel F, Castenholz R W. Occurrence of UV- absorbing,mycosporine- like compounds among cyano- bacterial isolates and an estimate of their screening capa- city[J]. Applied and Environmental Microbiology,1993,59:163- 169.
[27]  [27]Karentz D, McEuen F S. Survey of mycosporine- like amino acid compounds in Antarctic marine organism: potential protection from ultraviolet exposure[J]. Marine Biology,1991,108:157- 166.
[28]  [28]Xiong F S, Kopecky J I. The occurrence of UV- absorb- ing mycosporine- like amino acids in freshwater and terrestrial microalgae(Chlorophyta)[J]. Aquatic Botany,1999,63:37- 49.
[29]  [29]Hader D P, Worrest R C. Effects of enhanced solar ultra- violet radiation on aquatic ecosystems[J]. Photochem Photobiol, 1991,53:717- 725.
[30]  [30]Groniger A, Hader DP. Introduction of the synthesis of an UV- absorbing substance in the green algae Prasiola stipitata[J]. Journal of Phytochemistry and photobi- ology B.Biology, 2002,66:54- 59.
[31]  [31]Karentz D, Mc Euen F S, Land M C, et al. Survey of mycosporine- like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure[J]. Marine Biology, 1991, 108:157- 166.
[32]  [32]Marchant H J, Davidson A T, Kelly G J. UV- B pro- tecting compounds in the marine alga Phaeocystis pouchetii from Antarctic[J]. Marine Biology, 1991,109:391- 395.
[33]  [33]Jennifer H, Skerrat A D. Effect of UV- B on lipid content of three Antarctic marine phytoplankton[J]. Phytochemistry, 1998,49:4 999- 5 007.
[34]  [34]缪锦来 ,李光友 ,侯旭光 ,等 . UV- B辐射对南极冰藻中抗辐射物质的诱导作用 [J]. 高技术通讯 ,2002,4:92- 96.
[35]  [35]缪锦来 ,石红旗 ,李光友 ,等 . UV- B辐照培养下南极冰藻的形态和超微结构及主要生化组成的变化[J]. 中国海洋药物 ,2003,2:5- 12.
[36]  [36]Alison L G, Alistair W M, Pedro O M. Tolerance of Antarctic cyanobacterial mats to enhanced UV radiation[J]. FEMS Microbiology Ecology,2001,37:91.
[37]  [37]Peter D N, Jennifer H S, Andrew D, et al. Lipids of cultured Phaeocystis pouchetii: Signatures for food- web, biogeochemical and environmental studies in Antarctica and the Southern ocean[J]. Phytochem, 1991,30:3 209.
[38]  [38]Krinsky N I. Antioxidant functions of carotenoids[J]. Free Radic Biol Med,1989,7:617- 635.
[39]  [40]方金瑞 . 海洋微生物 :开发海洋药物的重要资源 [J]. 中国海洋药物 ,1998,17(3):53- 56.
[40]  [39]Berker- Hapak M, Troxtel E, Hoeter J, et al. RPOS dependent overexpression of carotenoids from Erwinia - herbicola in OXYR- deficient Escherichia coli[J]. Biochem Biophys Res Comun, 1997,239:305- 309.
[41]  [41]Dawid W. Psychrophilic myxobacteria from Antarctic soil[J]. Polarforschung, 1988:58(2/3): 271- 278.
[42]  [42]Hellio C, Bremer G, Pons A M, et al. Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France[J]. Appl Microbiol Biotechnol,2000,54:543- 549.
[43]  [43]鲁敏 ,王文翔 ,王丽萍 ,等 . 南极土壤嗜冷真菌 Chr- ysosporium sp. C3438活性代谢产物 C3438A的分离及结构鉴别 [J]. 中国抗生素杂志 ,2002,27(1):9- 12.
[44]  胡继兰,张春颖,娜仁,等 .产生抗肿瘤抗生素 San-dramycin的南极放线菌 C3905[J].微生物学报,2000,40(6):646-651.
[45]  王泽君 ,戚长菁 . 南极土壤防线菌产生的抗肿瘤抗生素 C3905A的分离与鉴别 [J]. 中国抗生素杂志 , 1999,24(5):388- 391.
[46]  [46]李根 ,陈瑞川 ,林昱 . 具抗肿瘤活性的海洋微生物菌株的初步筛选 [J]. 台湾海峡 ,2002,21(1):18- 22.
[47]  [47]Okuyama H. Identification and characterization of a 9- cis- hexadecenoic acid cis- tran isomerase from a psy- chrotrophic bacterium, Pseudomonas sp. strain E- 3[J]. Proc NIPR Symp Polar Biol,1997,10:153- 162.
[48]  [48]Tsigos I, Velonia K, Smonou I, et al. Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophlie Monraella sp.TAE123[J].Euro- pean J Biochem,1998,254(2):356- 362.
[49]  [49]Di- Fraia R, Wilquet V, Ciardiello M A,et al. NAD+- dependent glutamate dehydrogenase in the Antarctic psy- chrotolerant bacterium Psychrobacter sp. TAD1 Characte- rization, protein and DNA sequence, and relationship to other glutamate dehydrogenases[J]. European J Biochem, 2000,267(1):121- 131.
[50]  [50]Camardella L, Di Fraia R, Antignani A, et al. The Antarctic Psychrobacter sp. TAD1 has two cold- active glutamate dehydrogenases with different cofactor specifici- ties. Characterization of the NAD+- depe ndent enzyme[J]. Comparative Biochemistry and Physiology Part A,2002,131:559- 567.
[51]  [51]曾胤新 ,蔡明宏 .一株产蛋白酶南极耐冷细菌的筛选及研究 [J].生物技术 ,2001,11(2):17- 20.
[52]  [52]蔡明红 ,陈波 .一株北极海洋细菌及其蛋白酶的生理生化特征研究 [J].极地研究 , 2000,12(4): 263- 268.
[53]  [53]曾胤新 ,陈波 .极区低温海洋细菌及其产酶情况的初步研究 [J].生物技术 ,2002,12(1):7- 12.
[54]  [54]Feller G, Dominique D′ Amico, Gerday C. Thermodynamic stability of a cold- active α- amylose from the Antarctic bacterium, Alteromona shaloplanctis[J]. Biochemistry,1999,38(14):613- 619.
[55]  [55]Bentahir M, Feller G, Aittaleb M, et al. Structural, kinetic, and calorimetric characterization of the cold- active phosphoglycerate kinase from the Antarctic Pseu- domonas sp. TACⅡ 18[J]. J Bio Chem, 2000, 275(15):11,147- 153.
[56]  [56]曾胤新 ,陈波 . 南极低温微生物研究及其应用前景[J]. 极地研究 ,1999,11(2):12- 15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133