Berman A, Hanson J, Leiserowitz L, et al. Biological control of crystal texture: adapting crystal properties 1993, 259: 776-779. a widespread strategy for to function [J].Science,1993, 259: 776-779.
[2]
Lowenstam H A. Minerals formed by organisms[J]. Science, 1981, 211:1 126-1 131.
[3]
Mann S. Molecular recognition in biomineralization[J]. Nature, 1988, 332:119-124.
[4]
Kawaguchi T, Watabe N. The organic matrices of the shell of the American oyster Crassostrea virginica Gmelin[J]. J Exp Mar Biol Ecol, 1993, 170:11 28.
[5]
Halloran B A, Donachy J E. Characterization of organic matrix macromolecules from the shells of the Antarctic scallop, Adamussium colbecki [J]. Comp Bioehem Physiol, 1995, 111B:221-231.
[6]
Marxen J C, Becker W. The organic shell matrix of the freshwater snail Biomphalaria glabrata[J]. Comp Biochem Physiol, 1997, 118B: 23-33.
[7]
Wheeler A P, Rusenko K W, Swift D M, etal. Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix[J]. Mar Biol, 1988, 98:71-80.
[8]
Sudo S, Fujikawa T, NagakurA K, et al. Structures of mollusc shell framework proteins [J]. Nature, 1997, 387:563-564.
[9]
Samata T, Krampitz G. Ca^2 -binding polypeptides in oyster shells[J]. Malaeologia, 1982, 22:225-233.
[10]
Yang L, Zhang X, Liao Z, et al. Interracial molecular recognition between polysaccharides and calcium carbonate during crystallization[J]. Journal of Inorganic Biochemistry, 2003, 97:377-383.
[11]
Weiner S, Traub W. Macromolecules in mollusk shells and their functions in biomineralization[J]. Philos Trans R Soe Lond B, 1984, 304:425-434.
[12]
Falini G, Albeck S, Weiner S, etal. Control of aragonite or calcite polymorphism by mollusk shell macromolecules[J]. Science, 1996, 271:67-69.
[13]
Weiner S, Traub W. X-ray diffraction study of the insoluble organic matrix of mollusk shells[J]. FEBS Lett, 1980, 111:311-316.
[14]
Marxen J C, Hammer M, Gehrke T, et al. Carbohydrates of the organic shell matrix and the shell-forming tissue of the snail Biom phalaria glabrata (Say)[J]. Biol Bull, 1998, 194:231-240.
[15]
Worms D, Weiner S. Mollusc shell organic matrix: Fourier transform infrared study of the acidic macromolecules[J]. J Exp Zool, 1986, 237:11-20.
[16]
Emily A, Cobabe M P. Molecular and isotopic compositions of lipids in bivalve shells: a new prospect for molecular paleontology[J]. Geochimica et Cosmoehimica Acta, 1995, 59:87-95.
[17]
Kunigelis S C, Saleuddin A S M. Shell repairs rates and carbonic anhydrase activity during shell repair in Helisoma duryi (Mollusca) [J]. Can J Zool, 1983, 61:597-602.
[18]
Lorens R B, Bender M L. The impact of solution chemistry on Mytilus edulis calcite and aragonite[J]. Geochim Cosmochim Acta, 1980, 44:1 265-1 278.
[19]
Carriker M R, Palmer R E, Sick L V, etal. Interaction of mineral elements in sea water and shell of oysters (Crassostrea virginica (Gmelin)) cultured in controlled and natural systems[J]. J Exp Mar Biol Eeol, 1980, 46..279 296.
[20]
Addadi L, Weiner S, Geva M. On how proteins interact with crystals and their effect on crystal formation [J]. Z Kardiol, 2001, 90:92-98,
[21]
Wierzbicki A, Sikes C S, Madura J D, et al. Atomic force microscopy and molecular modeling of protein and peptide binding to calcite[J]. Caleif Tissue Int, 1994, 54:133-141.
[22]
Garside J. Nucleation[M]. Berlin: Springer Verlag, 1982. 23-35.
[23]
Addadi L, Weiner S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization[J]. Proc Natl Acad Sci USA, 1985, 82:4 110-4 114.
[24]
Weiner S, Addadi L. Design strategies in mineralized biological materialsl[J]. J Mater Chem, 1997, 7: 689-702.
[25]
Stupp S I, Braun P V. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductorsi[J]. Science, 1997, 277:1 242-1 248.
[26]
Belcher A M, WU X H, Christensen R J, et al. Con trol of crystal phase switching and orientation by soluble mollusk-shell proteins[J]. Nature, 1996, 381 : 56-58.
[27]
Borbas J E, Wheeler A P, Sikes C S. Molluscan shell matrix phosphoproteins: correlation of degree of phosphorylation to shell mineral microstructure and to in vitro regulation of mineralization[J]. J Exp Zool, 1991, 258:1-13.
[28]
Keith J, Stockwell S, Ball D, et al. Comparative analysis of maromoleeules in mollusk shells[J]. Comp Biochem Physiol, 1993, 105B:487-496.
[29]
Gotliv B A, Addadi L, Weiner S. Mollusk shell acidic proteins: in search of individual functions [J]. Chem Bio Chem, 2003, 4:522-529.
[30]
Gregoire C. Structure of the molluscan shell[A]. Florkin M, Scheer B T. Chemical Zoology, Vol. Ⅶ, Mollusca [C]. New York and London: Academic Press, 1972. 45-102.
[31]
Mai K, Zhang W, Tan B, etal. Effects of dietary zinc on the shell biomineralization in abalone Haliotis discus hannai, Ino[J]. J Exp Marine Biol Ecol, 2003, 283:51-62.
[32]
Weiner S. Separation of acidic proteins from mineralized tissues by reversed-phase high-performance liquid chromatography[J].J Chromat, 1982, 245 : 148-154.
[33]
Donachy J E, Drake B, Sikes C S. Sequence and atomic force microscopy analysis of a matrix protein from the shell of the oyster Crassostrea virginica [J]. Marine Biology, 1992, 114:423-428.
[34]
Rusenko K W. Studies on the structure and function of shell matrix proteins from the American oyster, Crassostrea virginica [D]. Clemson, SC: Clemson University, 1988. 287.
[35]
Rusenko K W, Donachy J E, Wheeler A P. Purification and characterization of a shell matrix phosphoprotein from the American oyster[A]. Sikes C S, Wheeler A P. Surface Reactive Peptides and Polymers: Discover and Commercialization[C]. Washington, DC:ACS Books, 1991. 107-124.
[36]
Addadi L, Weiner S. Control and design principles in biological mineralizationl[J]. Angew Chem Int ed Engl, 1992, 31:153-169.
[37]
Sikes C S, Wheeler A P. Control of crystallization by polyanionic hydrophobic polypeptides[A]. Sikes C S, Wheeler A P. Chemical Aspects of Regulation of Mineralization[C]. Mobile, Alabama: University of South Alabama Publication Service, 1988. 15-20.
[38]
Wheeler A P, Low K C, Sikes C S. CaCO3 crystal binding properties of peptides and their influence on crystal growth[A]. Sikes C S, Wheeler A P. Surface Reactive Peptides and Polymers: Discover and Commet Cialization[C]. Washington, DC : ACS Books, 1991. 72-84.
[39]
Samata T, Hayashi N, Kono M, etal. A new matrix protein family related to the nacreous layer formation of Pinctada fucata [J]. FEBS Letters, 1999, 462: 225-229.
[40]
Kono M, Hayashi N, Samata T. Molecular mechanism of the nacreous layer formation in Pinctada maxima [J]. Biochemical and Biophysical Research Communications, 2000, 269:213-218.
[41]
Shen X, Belcher A M, Hansma P K, etal. Molecular cloning and charaterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens [J]. J Biol Chem, 1997, 272:32 472-32 481.
[42]
Miyamoto H, Miyashita T, Okushima M, et al. A carbonic anhydrase from the nacreous layer in oyster pearls[J]. Proc Natl Acad Sci USA, 1996, 93:9 657-9 660.
[43]
Arias J L, Fernandez M S. Biomimetic processes through the study of mineralized shells[J]. Materials Characterization, 2003, 50:189-195.