Suikkanen S, Fistarol G O, Graneli E et al. Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena,Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures [J]. Journal of Experimental Marine Biology and Ecology, 2004, 308: 85-101.
Twiner M J, Chidiac P, Dixon S J, et al. Extracellular organic compounds from the ichthyotoxic red tide alga Heterosigma akashiwo elevate cytosolic calcium and induce apoptosis in Sf9 cells [J]. Harmful Algae, 2005, 4:789-800.
[6]
Kim D Y, Oda T, Ishimatsu A, Muramatsu T.Galacturonic-acid-induced increase of superoxide production in red tide phytoplankton Chattonella marina and Heterosigma akashiwo [J]. Biosci Biotechnol Biochem,2000, 64: 911-914.
[7]
Twiner M J, Dixon S J, Trick C G. Toxic effects of Heterosigma akashiwo do not appear to be mediated by hydrogen peroxide [J]. Limnol Oceanogr, 2001, 46:1400-1 405.
[8]
Weidenhamer J D, Hartnett D C, Romeo J T.Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants [J]. J Appl Ecol, 1989, 26: 613-624.
[9]
Sol\\'e J, Garcia-Ladona E, Ruardij P. Modelling allelopathy among marine algae [J]. Ecological Modelling, 2005, 183:373-384.
[10]
Freedman H I, Shukla J B. Models for the effect of toxicant in single-species and predator-prey systems [J]. J Math Biol, 1991, 30: 15-30.
[11]
Uchida T, Yamaguchi Y, Matsuyama Y, et al. The red-tide dinoflagellate Heterocapsa sp. Kills Gyrodinium instriatum by cell contact [J]. Mar Eeol Prog Ser, 1995, 118:301-303.
[12]
Gross E M. Allelopathy in benthis and littoral areas: case studies on allelochemicals from benthic cyanobaeteria and submerged macrophytes [A]. Inderjit D, Dakshini K M M,Foy C L. Principles and practices in plant ecology:Allelochemical interactions [C]. CRC, Boca Raton, 1999,179-199.
Begon M, Harper J L, Townsend C R. Ecology: Individuals,Populations and Communities [M]. 3rd ed. Oxford:Blackwell Science Press, 1996.
[20]
Turner J T. Planktonic copepods of Boston Harbor,Massachusetts Bay and Cape Cod Bay, 1992 [J].Hydrobiologia, 1994, 292-293:405-413.
[21]
Huisman J F, Weissing J. Competition for nutrients and light among phytoplankton species in a mixed water column:theoretical studies [J]. Wat Sci.Tech, 1995, 4: 143-147.
[22]
Thi N N P,:Huisman J, Sommeijer B P. Simulation of three-dimensional phytoplankton dynamics: competition in light-limited environments [J]. J Computational and Applied Mathematics, 2005, 174: 57-77.
[23]
Han B P, Virtanen M, Koponen J, et al. Predictors of light-limited growth and competition of phytoplaakton in a well-mixed water column [J]. J theor Biol, 1999, 197:439-450.
[24]
Tilman D. Resource competition and community structure [M]. Princeton: Princeton University Press, 1982.
[25]
Sommer U. Comparison between steady state and nonsteady state competition: experiment with natural phytoplankton [J]. Limnol Oceanogr, i 985, 30:335-346.
[26]
Egge J K. Are diatoms poor competitors at low phosphate concentrations? [J]. Mar Sys, 1998, 16: 191-198.
[27]
Hickel W, Berg J, Treutner K. Variability in phytoplankton biomass in the German Bight near Helgoland, 1980-1990 [J].ICES Marine Science Symposia, 1992, 195: 249-259.
[28]
Dippner J W. Competition between different groups of phytoplankton for nutrients in the Southern North Sea [J].Journal of Marine Systems, 1998, 14: 181-198.
[29]
Kuwata A, Miyazaki T. Effects of ammonium supply rates on competition between Microcystis nooacekii (Cyanobacteda) and Scenedesmus quadricauda (Chlorophyta): simulation study [J]. Ecological Modeling,2000, 135: 81-87.
Rice E L(Ed.). Allelopathy [M]. 2nd ed. New York:Academic Press, 1984. 130-138.
[34]
Fogg G E. Extracellular products of algae in freshwater [J].Ergebn der Limnol, 1971, 5: 1-25.
[35]
Honjo T. The biology and prediction of representative red tides associated with fish kills in Japan [J]. Research of Fish Science, 1994, 2: 225-253.
[36]
Pratt D M. Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture [J].Limnology and Oceanography, 1966, 11: 447-455.
Anderson D M, Kulis D M, Sullivan J, et al. Toxin composition variations in one isolate of the dinoflagellate Alexandriumfundyense [J]. Toxicon, 1990b, 28: 885-893.
[40]
Johansson N, Graneli E, Yasumoto T, et al. Toxin production by Dinophysis acuminata and D. acuta cells grown under nutrient sufficient and deficient conditions [A].Harmful and Toxic Algal Blooms [C]. Paris:Intergovernmental Oceanographic Commission of United Nations Educational, Scientific and Cultural Organization,1996.227-280.
[41]
Johansson N, Graneli E, Yasumoto T, et al. Toxin production by Dinophysis acuminata and D. acuta cells grown under nutrient sufficient and deficient conditions [A].Harmful and Toxic Algal Blooms [C]. Paris:Intergovernmental Oceanographic Commission of United Nations Educational, Scientific and Cultural Organization,1996.227-280.
[42]
Stoecker D K, Coats D W. Mixotrophy in the dinoflagellate,Prorocentrum minimum [J]. Marine Ecology progress Series, 1997, 152: 1-12.
[43]
Maranger R, Birds D F, Price N M. Iron acquisition by photosynthetic marine phytoplankton from ingested bacteria [J]. Nature, 1998, 396: 248-251.
[44]
Thingstad T F, Haveskum H, Garde K, et al. On the strategy of\\'eating your competitor\\': a mathematical analysis of algal mixotrophy [J]. Ecology, 1996, 77(7): 39-49.
Bu X W, Xu W Y, Zhu D D, et al. Discussion about mechanism of harmful algal blooms breakout [J]. Acta Oceanologica Sinica, 2005, 24(1): 101-106.
[48]
Uchida T, Toda S, Matsuyama Y, et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory [J]. J Exp Mar Biol Ecol, 1999, 241 : 285-299.