全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
海洋科学  2007 

光照和营养盐胁迫对龙须菜生长及生化组成的影响

, PP. 22-26

Keywords: 光照强度,龙须菜(Gracilaria,lemaneiformis),营养盐胁迫,生化组成

Full-Text   Cite this paper   Add to My Lib

Abstract:

以龙须菜(Gracilarialemaneiformis)为实验材料,分别研究了光照强度、营养盐胁迫对其生长及生化组成的影响。结果表明,在800~3000lx的范围内随光强的升高,龙须菜生长率增加,但藻红素(PE)、叶绿素a、蛋白质和可溶性总糖含量却降低,即低光强更利于龙须菜生化组分的积累。饥饿处理组、饱和处理组及正常对照组的生长率分别为0.9%,5.01%,3.06%。饥饿处理组的总C含量最高,总N及C/N比值高(>15),饱和处理组则相反,C/N比值<10,即存在C高N低、N高C低的现象。表明水体营养状况对龙须菜生长、体内生化组分有显著影响。总C、总N及C/N比都能很好地反映藻体的营养状态。饱和处理组藻体呈现深红色,饥饿处理组藻体色泽为浅黄色,因此也可根据藻体色泽的变化来估计藻体的营养状态。

References

[1]  Lapointe B E,Dawes C J,Tenore K R.Interactions between light and temperature on the physiological ecology of Gracilaria tikvahiae Ⅱ nitrate uptake and levels of pigments and chemical constituents[J].Mar Biol,1984,80:171-178.
[2]  刘静雯,董双林.光照和温度对细基江蓠繁枝变型的生长及生化组成影响[J].青岛海洋大学报,2001,31(3):332-338.
[3]  黄晓航,温宗存,彭作圣,等.间歇施肥对龙须菜的生长和化学组成的影响[J].海洋与湖沼,1998,29(6)570-575.
[4]  达维斯C J.海洋植物学[M].厦门大学植物生态学研究室译.厦门:厦门大学出版社,1989.
[5]  Moran R.Formulae for determination of Chlorphyllous pigments extracted with N,N-dimethylformamide[J].Plant Physiol,1982,69:1 376-1 381.
[6]  陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002.
[7]  曾呈奎.经济海藻种质种苗生物学[M].济南:山东科学技术出版社,1999.
[8]  Lohman K,Priscu J C.Physiological indicators of nutrient deficiency in Cladophora (Chorophyta) in the Clark Fork of the Columbia River,Montana[J].J Phycol,1992,28:443-448.
[9]  Gerard V A.In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrofera[J].Mar Biol (Berlin),1982,69:51-54.
[10]  Simon D C,Mark J O,William C D.Gracilaria edulis (Rhodophyta) as a biological indicator of pulsed nutrients in oligotrophic waters[J].J Phycol,2000,36:680-685.
[11]  Ryther J H,Corwin N,DeBusk T A,et al.Nitrogen uptake by the red algae Gracilaria tikvahiae[J].Aquaculture,1981,26:107-115.
[12]  Hanisak M D,Nitrogen limitation of Codium fragile spp.Tomentosoides as determined by tissue analysis[J].Mar Biol,1979,50:333-337.
[13]  Deboer J A,Effects of nitrogen enrichment on growth rate and phycocolloid content in Gracilaria foliifera and Neoagardhjiella baileyi (Florideophyceae)[J].Proc Int Seaweeds Symp,1979,9:263-271.
[14]  Santelices B,Doty M S.A review of Gracilaria farming[J].Aquaculture,1989,78:59-133.
[15]  Fei X G.Solving the coastal eutrophication problem by large scale seaweed cultivation[J].Hydrobiologia,2004,512(1-3):145-151.
[16]  Duke C S,Litaker W,Ramus J.Effect of temperature,N supply,and tissue N on ammonium uptake rates oft he Ulva curuata and Codium decorticatum[J].J Phycol,1989,25:113-120.
[17]  McGlathery K J.Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum[J].J Phycol,1996,31:393-401.
[18]  Kursar T A,Alberte R S.Photosynthetic unit organization in a red alga:relationships between light-harvesting pigments and reaction centers[J].Plant Physiol,1983,72:409-414.
[19]  Lomas M W,Glibert P M.Interactions between NH4 and NO3 uptake and assimilation:Comparison of diatoms and dinoflagellates at several growth temperature[J].Mar Biol,1999,133:541-551.
[20]  Harlin M M,Thorne-Miller B.Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon[J].Mar Biol (Berlin),1981,65:221-229.
[21]  Bjornsater B R,Wheeler A.Effect of nitrogen and phosphorous supply on growth and tissue composition of Ulva fenestrate and Enteromorpha intestinalis (Ulvales,Chorophyta)[J].J Phycol,1990,26:603-611.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133