全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
海洋科学  2007 

图像自动识别技术在海洋浮游生物分析中的应用

, PP. 61-66

Keywords: 海洋浮游生物,特征提取,图像处理,模式识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了一种利用数学形态学特征和Gabor纹理特征,结合主成分分析与支持向量机对胶州湾沿岸7种浮游生物的活体图像进行自动识别的方法。实验结果表明,基于主成分分析的降维识别模式可以提高系统识别性能,其平均识别正确率达78.5%,通过对图像采集、图像处理、特征的选取等方面做进一步的改进和提高,基于计算机数字图像的海洋浮游生物自动识别方法将为海洋生态环境监测提供新的实时、快速、高效检测平台。

References

[1]  Pech-Pacheco L, Alvarez-Borrego J, Keil M. Automatic object identification irrespective of geometric ehanges[J]. Optical Engineering, 2003, 42:551-559.
[2]  Culverhouse P F, Simpson R G, Ellis R, et al. Automatic classification of field collected dinoflagellates by artificial neural network[J]. Marine Ecology Progress Serries, 1996, 139:281-287.
[3]  Davis C S, Gallager S M, Solow A. R. Microaggregations of oceanic plankton observed by towed video microscopy[J]. Science, 1992, 257:230-232.
[4]  Tang X, Stewwart W K, Vincent L, et al. Automatic plankton image recognition[J]. Artificial Intelligence Review, 1998, 12:177-199.
[5]  Samson S, Hopkins T, Remsen A, et al. A system for high resolution zooplankton imaging [J]. IEEE Journal of Ocean Engineering, 2001, 26: 671-676.
[6]  Luo T, Kramer K, Goldgof D B, et al. Recognizing plankton images from the shadow image particle profiling evaluation reeorder[J]. IEEE Transactions on System, Man and Cybernetics, 2004, 34: 2 423-2 433.
[7]  Sieracki C K, Sieracki M E, Yentsch C S. An imaging-in-flow system for automated analysis of marine microplankton[J]. Mar Ecology-Progress Ser, 1998, 168: 285-296.
[8]  贾永红.数字图像处理[M].武汉:武汉大学出版社,2003..
[9]  Canny J A. Computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8 : 679-698.
[10]  Jaffries H P, Berman M S, Poularikas A D, et al. Automated sizing and counting and identification of zooplankton by pattern recognition[J]. Marine Biology, 1984, 78: 329-334.
[11]  Hu M K. Visual pattern recognition by moment invariants[J]. IRE Trans Information theory, 1962, 8: 179-187.
[12]  Saber E, Tekalp A M. Integration of color, shape, and texture for automatic image annotation and retrieval[J]. Journal of Electronic Imaging, 1998, 17: 684-700.
[13]  Grigorescu S E, Petkov N, Kruizimga R. Comparison of texture features based on Gabor filter[J]. IEEE Transactions on Image Processing, 2002, 11: 1 160-1 167.
[14]  杜树新 吴铁军.模式识别中的支持向量机方法[J].浙江大学学报:工学版,:.
[15]  张学工.关于统计学习理论与向量机[J].自动化学报,:.
[16]  Cherkassky V, Mulier F. Learning from data: concepts, theory and methods[M]. New York:John Viley & Sons, 1997.
[17]  朱辉 杨扬 颉斌 封筠.SVM在小字符集手写体汉字识别中的应用研究[J].微计算机信息,2004,(4):.
[18]  Law M H, Figueriredo M AT, Jain A K. Simultaneous feature selection and clustering using mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26:1 154-1 166.
[19]  Kittler J, Hater M, Duim R P, etal. On combining classifiers[J]. IEEE Transanctions on Pattern Analysis and Machine Intelligence, 1998, 20:226-239.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133