全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
海洋科学  2007 

海洋蓝藻基因组学研究

, PP. 79-86

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  Fleischmann R D, Adams M D, Smith H O, et al.Whole genome random sequencing and assembly of Haemophilus influenzae Rd [J]. Science, 1995, 269 :496-512.
[2]  Venter J C, Smith H O, Hood L. A new strategy for genome sequencing [J]. Nature, 1996, 381:364-366.
[3]  Palenik B, Brahamsha B, Larimer F W, et al. The genome of a motile marine Synechococcus [J]. Nature,2003, 424(28):1 037-1 042.
[4]  Delcher A L, Harmon D, Kasif S, et al. Improved microbial gene identification with GLIMMER [J]. Nucleic Adds Res, 1999, 27:4 636-4 641.
[5]  Badger J H, Olsen G J. CRITICA: Coding region identification tool invoking comparative analysis [J].Mol Biol Evol, 1999, 16:512-524.
[6]  Foder S P A, Read J. Light-directed, spatially addressable parallel chemical synthesis [J]. Science, 1991,251:767-773.
[7]  Schena M, Heller R A, Theriault T P, et al. Microarrays : biotechnology\\'s discovery platform for functional genomcis [J]. Trends Biotechnol, 1998, 16:301-306.
[8]  Hihara Y, Kamei A, Kanehisa M, et al. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light [J]. Plant Cell, 2001,13 : 793-806.
[9]  Huang L, McCluskey M P, Ni H, et al. Global gene expression profiles of the cyanobacterium Synechococcus sp. strain PCC6803 in response to irradiation with UV-B and white light [J]. J Bacteriol, 2002, 184:6 845-6 858.
[10]  Allakhverdiev S, Hishiyama Y, Miyairi S, et al.Salt stress inhibits the repair of photodamaged photosystem Ⅱ by suppressing the transcription and translation of psbA genes in Synechocystis [J]. Plant Physiol, 2002, 130:1 443-1 453.
[11]  Kanesaki Y, Suzuki I, Allakhverdiev S I, et al. Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp.PCC6803 [J]. Biochem Biophys Res Commun, 2002,290:339-348.
[12]  Ehling-Schulz M, Schulz S, Wait R, et al. The UVB stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins [J]. Mol Microbiol, 2002, 46:827-843.
[13]  Shibata M, Katoh H, Sonoda M, et al. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis [J].J Biol Chem, 2002, 277:18 658-18 664.
[14]  Liaimer A, Matveyev A, Bergman B. Isolation of host plant induced cDNAs from Nostoc sp. strain PCC9229 forming symbiosis with the angiosperm Gunnera spp. [J]. Symbiosis, 2001, 31:293-307.
[15]  Wang Y, Sun J, Chitnis P R. Proteomic study of the peripheral proteins from thylakoid membranes of the cyanobacterium Synechocystis sp. PCC6803 [J]. Electrophoresis, 2000, 21:1 746-1 754.
[16]  Sazuka T, Yamaguchi M, Ohara O. Cyano2Dbase updated: linkage of 234 protein spots to corresponding genes through N-terminal microsequencing [J].Electrophoresis, 1999, 20:2 160-2 171.
[17]  Fulda S, Huang F, Nilsson F, et al. Proteomies of Synechocystis sp. strain PCC6803. Identification of periplasmie proteins in cells grown at low and high salt concentrations [J]. Eur J Biochem, 2000, 267:5 900-5 907.
[18]  Huang F, Parmryd I, Nilsson F, et al. Proteomics of Synechocystis 6 803 : identification of plasma membrane proteins [J]. Mol Cell Proteomics, 2002,1 (12) : 956-966.
[19]  Yang C. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis [J]. Appl Microbiol Biotechnol, 2002, 58: 813-822.
[20]  Kashino Y, Lauber W M, Carroll J A, et al. Proteomic analysis of a highly active photosystem Ⅱ preparation from the cyanobacterium Synechocystis sp. PCC6803 reveals the presence of novel Polypeptides [J]. Biochem, 2002, 41:8 004-8 012.
[21]  Christiansen G, Dittmann E, Ordorika L V, et al.Nonribosomal peptlde synthetase genes occur in most cyanobacterlal genera as evidenced by their distribution in axenic strains of the PCC [J]. Arch Microbiol, 2001, 176:452-458.
[22]  Georicke R, Repeta D J. The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prochlorophyte [J]. Limnol Oceanogr, 1992, 37:425-433.
[23]  La Roche J, van der Staay G W M, Partensky F, et al. Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvestlng proteins[J]. Proc Natl Acad Sci USA, 1996, 93:15 244-15 248.
[24]  Partensky F, Hess W R, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance [J]. Micro Mol Biol Rev, 1999, 43(1) :106-127.
[25]  Ting C S, Rocap G, King J, et al. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies [J].Trends in Mircobiol, 2002, 10(3) :134-142.
[26]  Bryant D A. The beauty in small things revealed[J]. Proc Natl Acad Sci USA, 2003, 100(17) : 9 647-9 649.
[27]  Dufresne A, Salanoubat M, Partensky F, et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototro-phic genome [J]. Proc Natl Acad Sci USA, 2003, 100(17): 10 020-10 025.
[28]  Akiyama H, Kanal S, Hirano M, et al. A novel plasmid recombination mechanism of the marine cyanobacterium Synechococcus sp. PCC7002 [J]. DNA Res, 1998, 5:327-334.
[29]  Kaneko T, Sato S, Kotani H, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. Ⅱ. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement) [J].DNA Res, 1996, 3:185-209.
[30]  Schyns G, Rippka R, Namane A, et al. Prochlorothrix hollandica PCC9006: Genomic properties of an axenic representative of the chlorophyll a/b-containing oxyphotobacteria [J]. Res Microbiol, 1997,148:345-354.
[31]  Meeks J C, Campbell E L, Summers M L, et al.Cellular differentiation in the cyanobacterium Nostoc punetiforme [J]. Arch Mierobiol, 2002, 178 (6):395-403.
[32]  Wilbanks S M, Glazer A N. Rod structure of a phycoerythrin Ⅱ-containing phycobilisome. I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus sp. WH8020 [J]. J Biol Chem, 1993, 268:1 226-1 235.
[33]  Willows R D, Mayer S M, Foulk M S, et al. Phytobilin biosynthesis: The Synechocystis sp. PCC6803 heme oxygenase-encoding hol gene complements a phytochrome-deficient Arabidopsis thaliana hyl mutant [J]. Plant Mol Biol, 2000, 13:113-120.
[34]  Richaud C, Zabulon G. The heme oxygenase gene(pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation [J]. Proc Natl Acad Sci USA, 1997, 94: 11736-11 741.
[35]  Cornejo J, Willows R D, Beale S I. Phytobilln biosynthesis: cloning and expression of a gene encoding soluble ferredoxlndependent heme oxygenase from Synechocystis sp. PCC6803 [J]. Plant J, 1998, 15:99-107.
[36]  Ting C S, Roeap G, King J, et al. Phyeobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity [J]. Microbiol, 2001, 147:3 171-3 182.
[37]  Lokstein H, Steglich C, Hess W R. Light-harvesting antenna function of phycoerythrin in Prochlorococcus marinus [J]. J Biochim Biophys Acta, 1999,1 410:97-98.
[38]  Steglich C, Mullineaux C W, Teuchner K, et al.Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo [J]. FEBS Lett, 2003, 553:79-84.
[39]  Stock J B, Robinson V L, Goudreau P N. Two-component signal transduction [J]. Annu Rev Biochem,2000, 69:183-215.
[40]  Mary I, Vaulot D. Two-component systems in Prochlorococcus MED4: Genomlc analysis and differential expression under stress [J]. FEMS Mierobiol Lett,2003, 226:135-144.
[41]  Hulett F M. The signal-transduction network for Pho regulation in Bacillus subtilis [J]. Mol Microbiol, 1996, 19:933-939.
[42]  Hihara Y, Sonoike K, Kanehisa M, et al. DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechococcus sp. strain PCC6803 [J]. J Baeteriol, 2003,185 : 1 719-1 725.
[43]  Heffelfinger G S, Martino A, Gorin A, et al. Carbon sequestration in Synechococcus sp. : from molecular machines to hierarchical modeling [J]. OMICS,2002, 6:305-330.
[44]  Mikami K, Kanesaki Y, Suzuki I, et al. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC6803 [J]. Mol Microbiol, 2002, 46 : 905-915.
[45]  Dittmann E, Erhard M, Kaebernick M, et al. Altered expression of two light-dependent genes in a mieroeystin-laeking mutant of Microcystis aeruginosa PCC7806 [J]. Mierobiol, 2001, 147:3 113-3 119.
[46]  Krehenbrink M, Oppermann-Sanio F B, Steinbuchel A. Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp.strain DSM 587 [J]. Arch Microbiol, 2002, 177:371-380.
[47]  Rocap G, Larimer F W, Lamerdin J, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentatiation [J]. Nature, 2003,424(28) : 1 042-1 047.
[48]  Watson G, Tabita F R. Regulation, unique gene organization, and unusual primary structure of carbon fixation genees from a marine phycoerythirn-containing cyanobacterium [J]. Plant Mol Biol, 1996, 32:1 103-1 115.
[49]  Chen X, Widger W R. Physical genome map ot the unicellular cyanobacterium Synechococcus sp. strain PCC7002 [J]. J Bacterial, 1993, 175:5 106-5 116.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133