Mushak P. Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions[J]. Sci Total Environ, 2003, 303(1,2) : 35-50.
[2]
Bowen H J M. Environmental Chemistry of the Elements [M]. London: Academic Press, 1979. 22.
[3]
Wang C Y, Wang X L. Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai Sea. [J]. J Environ Sci, 2007, 19:1 061-1 066.
Wan L, Wang N B, Li Q B, et al. Distribution of dissolved metals in seawater of Jinzhou bay, China [J]. ET&C. , 2008, 27(1) :43-48.
[9]
Fytianos K, Vasilikiotis G S. Concentration of heavy metals in seawater and sediments from the Northern Aegean Sea, Greece [J]. Chemosphere, 198a, 12: 83-91.
[10]
Fowler S W, Huynh-Ngoc L, Fukai R. Dissolved and particulate trace metals in coastal waters of the Gulf and Western Arabian Sea [J]. Deep-sea Res PT I, 1984, 31: 719-729.
[11]
Harper D J. The distribution of dissolved cadmium, lead, copper in the Brisrtol Channel and the outer Severn estuary [J]. Mar Chem, 1991, 33: 131-143.
[12]
Law R J, Waldock M J, Allehin C R, etal. Contaminants in seawater around England and Wales: Results from monitoring surveys [J]. Mar Pollut Bull, 1994, 28 : 668-675.
[13]
Kraepiel A M L, Chiffoleau J F, Martin J M, et al. Geochemistry of trace metals in the Gironde estuary [J]. Geochim Cosmochim Acta, 1997, 61:1 421-1 436.
[14]
Lee K W, Kang H S, Lee S H. Trace elements in the Korean coastal environment [J]. Sci Total Environ, 1998, 214. 11-19.
[15]
Saleh M A, Wilson B L. Analysis of metal pollutants in the Houston ship channel by inductively coupled plasma/mass spectrometry [J]. Ecotox Environ Safe, 1999, 44: 113-117.
[16]
Munksgaard N C, Parry D L. Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater [J]. Mar Chem, 2001, 75:165-184.
[17]
Tankere S P C, Muller F L, Burton J D, etal. Trace metal distributions in shelf waters of the northwestern Black Sea [J]. Cont Shelf Res, 2001, 21: 1 501-1 532.
[18]
El-Moselhy K M. , Gabal M N. Trace metals in water, sediments and marine organisms from the north- ern part of the Gulf of Suez, Red Sea [J]. J Mar Syst, 2004, 46: 39-46.
[19]
Cuong D T, Karuppiah S, Obbard J P. Distribution of heavy metals in the dissolved and suspended phase of the sea-surface microlayer, seawater column and in sediments of Singapore\\'s coastal environment[J]. Environ Monit Assess, 2008, 138: 255-272.
Hardy J T, Crecelius E A, Antrim L D, etal. Aquatic surface microlayer contamination in Chesapeake Bay [J]. Mar Chem, 1990, 28:33-351.
[25]
Snchez-Marin P, Lorenzo J I, Blust R, et al. Humic acids increase dissolved lead bioavailability for marine invertebrates [J]. Environ Sci Technol, 2007, 41(16) : 5 679-5 684.
[26]
Rosland E, Lund W J. Direct determination of trace metals in sea-water by inductively coupled plasma mass spectrometry [J]. J Anal At Spectrom, 1998, 13 (11): 1 239-1 244.
[27]
Riva B S V, Costa-Fernandez J M, Pereiro R, et al. Flow-through room temperature phosphorescence optosensing for the determination of lead in sea water [J]. Anal Chim Acta, 1999, 395:1-9.
[28]
Willie S N, Lam J W H, Yang L, et al. On-line removal of Ca, Na and Mg from iminodiacetate resin for the determination of trace elements in seawater and fish otoliths by flow injection ICP-MS [J]. Anal China Acta, 2001, 447(1): 143-152.
[29]
Yebra M C, Rodr\\'guez L, Puig L, et al. Application of a field flow preconcentration system with a minico- lumn packed with amberlite XAD-4/1-(2-pyridylazo)-2-naphthol and a flow injection-flame atomic absorption spectrometric system for lead determination in sea water [J]. Microchim Acta, 2002, 140: 219-225.
[30]
Mello L C. , Claudino A, Rizzatti I, etal. Analysis of Trace Metals Cu^2+ , Pb^2+ and Zn^2+ in coastal marine water samples from Florianopolis, Santa Catarina State, Brazil [J]. Braz Chem Soc, 2005, 16 (3A):308-315.
[31]
Sabarudin A, Lenghor N, Liping Y, etal. Automated online preconcentration system for the determination of trace amounts of lead using Pb-Selective resin and inductively coupled plasma-atomic emission spectrometry [J]. Spectrosc Lett, 2006, 39(6) :669-682.
[32]
Vereda A E, Siles C M T, Garcia T A, et al. Lead ultra-trace on-line preconcentration and determination using selective solid phase extraction and electrothermal atomic absorption spectrometry., applications in seawaters and biological samples [J]. Anal Bioanal Chem, 2006, 385(7): 1 178-1 185.
[33]
Sarradin P M, Lannuzel D, Waeles M, et al. Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from an active hydrothermal field on the EPR at 13°N [J]. Sci Total Environ, 2008, 392: 119-129.
[34]
Yantasee W, Hongsirikarn K, Warner C L, et al. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles [J]. Analyst, 2008, 133: 348-355.
Carasek E, Tonjes J W, Scharf M. A new method of microvolume back-extraction procedure for enrichment of Pb and Cd and determination by flame atomic absorption spectrometry [J]. Talanta, 2002, 56 (1): 185-191.
[37]
Chen J R, Teo K C. Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction [J]. Anal Chim Acta, 2001, 450(1-2): 215-222.
[38]
Zachariadis G A, Anthemidis A N, Bettas P G, et al. Determination of lead by on-line solid phase extraction using a PTFE micro-column and flame atomic absorption spectrometry [J]. Talanta, 2002, 57(5):919-927.
[39]
Matoso E, Kubota L T, Cadore S. Use of silica gel chemically modified with zirconium phosphate for pre- concentration and determination of lead and copper by flame atomic absorption spectrometry [J]. Talanta, 2003, 60(6): 1 105-1 111.
[40]
Kiptoo J K, Ngila J C, Silavwe N D. Solid-phase extraction of Zn( Ⅱ ), Cu( Ⅱ), Ni( Ⅱ ) and Pb( Ⅱ ) on poly (vinyl chloride) modified with 3-ferrocenyl-3- hydroxydithioacrylic acid, and their subsequent determination by electrothermal atomic absorption spectrometry[J]. Microchim Acta, 2008, 160: 211-218.
[41]
Doner G, Ege A. Determination of copper, cadmium and lead in seawater and mineral water by flame atomic absorption spectrometry after coprecipitation with aluminum hydroxide [J]. Anal Chim Acta, 2005, 547: 14-17.
[42]
Saitoh T, Satoh F, Hiraide M. Concentration of heavy metal ions in water using thermoresponsive chelating polymer [J]. Talanta, 2003, 61: 811-817.
[43]
Naseri M T, Hemmatkhah P, Hosseini M R M, et al. Combination of dispersive liquid-liquid mieroextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples [J]. Anal China Aeta, 2008, 610: 135-141.
[44]
Karami H, Mousavi M F, Yamini Y, et al. On-line preconcentration and simultaneous determination of heavy metal ions by inductively coupled plasma-atomic emission spectrometry [J]. Anal Chim Acta, 2004, 509(1) : 89-94.
[45]
Abbasse G, Ouddane B, Fischer J C. Determination of total and labile fraction of metals in seawater using solid phase extraction and inductively coupled plasma atomic emission spectrometry (ICP-AES) [J]. J Anal At Speetrom, 2002, 17:1 354-1 358.
Rajesh N, Manikandan S. Spectrophotometrie determination of lead after preconcentration of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column [J]. Spectrochim Acta A, 2008, 70(4) : 754- 757.
Carapuca H M, Monterroso S C C, Rocha L S, etal. Simultaneous determination of copper and lead in seawater using optimised thin-mercury film electrodes in situ plated in thiocyanate media [J]. Talanta, 2004, 64: 566-569.
[53]
Prego R, Cobelo-Garcia A. Cadmium, copper and lead contamination of the seawater column on the Prestige shipwreck (NE Atlantic Ocean) [J]. Anal Chim Acta, 2004, 524: 23-26.
[54]
Mello L C, Claudino A, Rizzatti I, et al. Analysis of trace metals Cu^2+ , Pb^2+ and Zn^2+ in coastal marine water samples from Florian6polis, Santa Catarina State, Brazil [J]. J Braz Chem Soe, 2005, 16(3): 308-315.
[55]
Cobelo-Garcia A, Prego R. Chemical speeiation of dissolved copper, lead and zinc in aria coastal system: the role of resuspended sediments [J]. Anal Chim Acta, 2004, 524: 109-114.
[56]
Scoullos M J, Pavlidou A S. Determination of the lability of lead, cadmium and zinc in a polluted mediter- ranean brackish-marine interface system [J]. Water Air Soil Poll, 2003, 147: 203-227.
[57]
Biscombe A, Nimmo M, Gledhill M, et al. An automated monitor to determine trace metal particle/dissolved interactions in natural waters [J]. Anal Chim Acta, 2004, 521: 69-76.
[58]
Betelu S, Parat C, Petrucciani N, etal. Semicontinuous monitoring of cadmium and lead with a screen- printed sensor modified by a membrane [J]. Electroanalysis, 2007, 19(2-3): 399-402.
[59]
De Macro R, Clarke G, Pejcic B. Ion-selective electrode potentionmetry in environmental analysis [J]. Electroanalysis, 2007, 19(19-20): 1987-2001.
[60]
Qin W, Zwickl T, Pretsch. E. Improved detection limits and unbiased selectivity coefficients obtained by using ion-exchange resins in the inner reference solution of ion-selective polymeric membrane electrodes [J]. Anal Chem 2000, 72:3 236-3 240.
[61]
Sokalski T, Bakker E, Pretsch E, et al. Lowering the detection limit of solvent polymeric ion-selective membrane electrodes. 2. Influence of composition of sample and internal electrolyte solution [J]. Anal Chem 1999, 71: 1 210-1 214.
[62]
Puntener M, Baier E, Pretsch E, et al. Improving the lower detection limit of potentiometric sensors by covalently binding the ionophore to a polymer backbone [J]. Anal Chim Acta, 2004, 503: 187-194.
[63]
Ceresa A, Bakker E, Pretsch E, etal. Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels: new requirements for selectivities and measuring protocols, and comparison with ICP-MS [J]. Anal Chem, 2001, 73: 343-351.
[64]
Malon A, Vigassy T, Bakker E, et al. Potentiometry at trace levels in confined samples., ion-selective electrodes with subfemtomole detection limits [J]. Am Chem Soc, 2006, 128(25):8 154-8 155.
[65]
Bobacka J, Ivaska A, Lewenstam A. Potentiometric ion sensors [J]. Chem Rev, 2008, 108: 329-351.
[66]
Lindner E, Buck R P. Microfabricated potentiometric electrodes and their in vivo applications [J]. Anal Chem, 2000, 72(9): 336A-345A.
[67]
陈国和.[D].成都:四川大学,2006,118-119.
[68]
Zhang Z J, Qin W, Liu S N. Chemiluminscence flow system for the monitoring of chromium(VI) in water [J]. Anal Chim Acta, 1995, 318(1) :71-76.
[69]
Qin W, Zhang Z J, Zhang C J. Chemiluminescence Flow System for Vanadium (V) with Immobilized Reagents [J]. Analyst, 1997, 122(7):685-688.
[70]
Qin W, Zhang Z J, Liu H J. Chemiluminescence flow- through sensor for copper based on an anodic stripping voltammetric flow cell and an ion-exchange column with immobilized reagents [J]. Anal Chem, 1998, 70:3 579-3 584.
[71]
李卫华 张小清.以偶合反应流动注射化学发光法测定铅[J].分析化学,:.
[72]
Plantz M R, Fritz J S, Smith F G, etal. Separation of trace metal complexes for analysis of samples of high salt content by inductively coupled plasma mass spectrometry [J]. Anal Chem, 1989, 61(2) : 149-153.
[73]
Huang Z Y, Chen F R, Wang X R, et al. Trace lead measurement and on-line removal of matrix interference in seawater by isotope dilution coupled with flow injection and ICP-MS [J]. Anal Chim Acta, 2004, 508:239-245.
[74]
Dimitrova-Koleva B, Benkhedda K, Ivanova E, et al. Determination of trace elements in natural waters by inductively coupled plasma time of flight mass spectrometry after flow injection preconcentration in a knotted reactor [J]. Talanta, 2007, 71 (1) : 44-50.
[75]
Centineo G, Gonzcilez E B, Sanz-Medel A. Multielemental speciation analysis of organometallic compounds of mercury, lead and tin in natural water samples by headspace-solid phase microextraction followed by gas chromatography-mass spectrometry [J]. J Chromatogr A, 2004, 1034: 191-197.