Davidson B S. New dimensions in natural products research: cultured marine microorganism[J]. Curr Opin Bioteehnol, 1995, 6: 284-289.
[2]
DeLong E F. Extreme genomes [J]. Genome Biol, 2000, 1(6):10 291-10 293.
[3]
DeLong E F, Karl D M. Genomic perspectives in microbial oceanography. Nature, 2005, 437(7 057): 336-342.
[4]
DeLong E F. Microbial population genomics and ecology [J]. Curr Opin Microbiol, 2002, 5(5) : 520-524.
[5]
Kato C, Bartlett D H. The molecular biology of barophilic bacteria. Extremophiles, 1997, 1(3): 111-116.
[6]
Hubel A, Brandau S, Dresel A, et al. A member of the C1pB family of stress proteins is expressed during heat shock in Leishmania spp [J]. Mol Bioehem Parasitol, 1995, 70(1-2): 107-118.
[7]
Kato C, Li L, Nakaumura Y, et al. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11 000 meters [J].Appl Environ Microbiol, 1998, 64:1 510-1 513.
[8]
Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples[J]. Biodivers Conserv, 1995, 4: 1-9.
[9]
Ishii A, Nakasone K, Sato T, et al. Isolation and characterization of the dcw cluster from the piezophilic deep-sea bacterium Shewanella violacea [J]. J Biochem (Tokyo), 2002, 132(2):183-188.
[10]
Durand P, Benyagoub A, Prieur D. Numerical taxonomy of heterotrophic sulfur oxidizing bacteria isolated from southwestern Pacific hydrothermal vents[J].Can J Microbiol, 1994, 40:690 -697.
[11]
Takami H, Inoue A, Fuji F, et al. Microbial flora in the deepest sea mud of the Mariana Trench [J]. FEMS Microbiol Lett, 1997, 152: 279-285.
[12]
Colquhoun J A, Heald S C, Li L, et al. Taxonomy and biotransformation activities of some deep-sea actinomycetes [J]. Extremophiles, 1998, 2(3) : 269-277.
[13]
Nold S C, Zhou J, Devol A H, et al. Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the beta subdivision of the Proteobacteria[J].Appl Environ Microbiol, 2000, 66(10): 4 532-4 535.
[14]
Roberto D, Michela S. Viral density and virus-to-bacterium ratio in deep sea sediments of the Eastern Mediterranean [J]. Appl Environ Microbiol, 2000, 66:1 857-1 861.
[15]
Cary S C. Vertical transmission of a chemoautotrophic symbiont in the protobranch bivalve, Solemya reidi [J].Moi Mar Biol Biotechnol, 1994, 3(3): 121-130.
[16]
Sharp R J, Ahmad S I, Munster A, et al. The isolation and characterization of bacteriophages infecting obligately thermophilic strains of Bacillus [J]. J Gen Microbiol, 198, 132(6): 1 709-1 722.
[17]
Uemori T, Ishino Y, Doi H, et al. The hyperthermophilic archaeon Pyrodictium occultum has two alphalike DNA polymerases [J].J Bacteriol, 1995, 177(8): 2 164-2 177.
[18]
Hough D W, Danson M J. Extremozymes[J]. Current Opinion in Chemical Biology, 1999, 3: 39-46.
[19]
Knapp S, de Vos W M, Rice D, et al. Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3. 0 A resolution[J].J Mol Biol, 1997, 267: 916-932.
[20]
ImYJ, Na Y, Kang G B, etal. The active site of a lon protease from Methanococcus jannaschii distinctly differs from the canonical catalytic Dyad of Lon proteases[J].J Biol Chem, 2004, 279(51): 53 451- 53 457.
[21]
Mattila P, Korpela J, Tenkanen T, et al. Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase-an extremely heat stable enzyme with proofreading activity [J]. Nucleic Acids Research, 1991, 19(18): 4 967-4 973.
[22]
Rinker K D, Kelly R M. Effect of carbon and nitrogen sources on growth dynamics and exopotysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium rhermotoga maritima[J]. Biotechnol Bioeng, 2000, 69(5): 537-547.
[23]
Turkiewicz M, Gromek E, Kalinowska H, et al. Biosynthesis and properties of an extracellular metalloprotease from the Antarctic marine bacterium Sphingornonas paucimobilis [J]. J Biotechnol, 1999, 70: 53-60.
[24]
Mayordomo I, Randez-Gil F, Prieto J A. Isolation, purification and characterization of a cold-active lipase from Aspergillus nidulans [J]. J Agric Food Chem, 2000, 48:105-109.
[25]
Coombs J M, Brenchley J E. Biochemical and phylogenetic analyses of a cold active β-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA [J]. Appl Environ Mierobiol, 1999, 65:5 443-5 450.
[26]
Wu C, Shivakumar S. Back-propagation and counterpropagation neural networks for phylogenetic classification of ribosomal RNA sequences [J]. Nucleic Acids Research, 1994, 22(20):4 291-4 299.
[27]
Kulakova L, Galkin A, Nakayama T, etal. Improvement of thermostability of cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella sp. strain Ac10 by rational mutagenesis [J]. Journal of Molecular Catalysis B:Emzymatic, 2003, 22(2) : 113-117.
[28]
Boruah H P, Bezbaruah B. Protease from Sporosarcinasp. RRLJ 1[J]. Indian J Exp Biol, 2000, 38(3): 293-296.
[29]
Wang F, Wang J, Jian H, etal. Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3 [J]. PLOS ONE, 2008, 3(4) : e1937.
[30]
Iyo A H, Forsberg C W. A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85 [J].Appl Environ Microbiol, 1999, 65: 995-998.
[31]
Tyson G W, Banfield J F. Cultivating the uncultivated: a community genomics perspective[J].Trends Microbiol, 2005, 13(9): 411-415.