全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
海洋科学  2015 

一种基于众数赋值的高光谱图像地物分类方法

DOI: 10.11759/hykx20141011009, PP. 72-78

Keywords: 高光谱图像,黄河口湿地,监督分类,非监督分类,众数赋值

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种融合监督分类与非监督分类结果的高光谱遥感影像分类新方法——众数赋值分类法。采用ISODATA非监督分类方法对高光谱遥感影像进行分类,并对非监督分类结果的图斑进行标记,同时用最大似然法(ML)和支持向量机(SVM)法进行监督分类,然后以监督分类结果对非监督分类后各斑块进行类别赋值。方法是:统计每个非监督分类斑块中由监督分类所获得的各类别像元数及所占比例,将非监督分类斑块的类别赋予所占比例最高的监督分类结果的类别,最终获得高光谱图像分类结果。研究表明:(1)非监督分类类别数量大于10时,其与ML分类结果融合的总体分类精度和Kappa系数均较监督分类法的分类结果好;(2)ML和20个类别的ISODATA分类结果融合的总体精度最高,为87.35%,比单独ML的总体精度高约2个百分点;(3)SVM和10个类别的ISODATA分类结果融合的总体精度提高最大,较SVM的总体精度提高近3个百分点;(4)随着非监督分类类别数量的增多,分类结果的总体精度呈现由低到高再到低的变化过程。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133