全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
海洋科学  2008 

深海热液环境中脂肪酸组成的研究进展

, PP. 78-86

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  Levesque C, Juniper S K, Lime\\'n H. Spatial organization of food webs along habitat gradients at deep-sea hydrothermal vents on Axial Volcano, Northeast Pacific[J]. Deep-Sea Research I,2006,53:726-739.
[2]  Lutz R A, Shank T M, Evans R. Life after death in the deep sea[J]. American Scientist,2001,89:422-431.
[3]  Fullarton J G, Wood A P, Sargent J R. Fatty acid composition of lipids from sulphur-oxidizing and methylotrophic bacteria from Thyasirid and Lucinid bivalves[J]. Journal of the Marine Biological Association of the United Kingdom, 1995,75:445-454.
[4]  Sargent J R, Parkes R J, Mueller-Harvey I, et al. Lipid biomarkers in marine ecology[A]. In: Sliegh M A. (ed) Microbes in the sea[C]. Chichester: Ellis Horwood Ltd, 1988.119-138.
[5]  Oliver J D, Colwell R R. Extractable lipids of Gram-negative marine bacteria: fatty acid composition[J]. Journal of bacteriology, 1973,23:442-458.
[6]  Leo R F, Parkes P L. Branched-chain fatty acids in sediments[J]. Science, 1965,152:649-650.
[7]  Hedrick D B, Pledger R D, White D C. In situ microbial ecology of hydrothermal vent sediments[J]. FEMS Microbiology Ecology, 1992,101:1-10.
[8]  Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean[J]. Organic geochemistry,2004,35:573- 582.
[9]  Baird B H, White D C. Biomass and community structure of the abyssal microbiota determined from the ester-linked phospholipids recovered from Venezuela Basin and Puerto Rico Trench sediments[J]. Marine Geology, 1985,68:217-231.
[10]  Phleger C F, Nelson M M, Groce A K. Lipid compostion of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and Limets Lepetodrilus spp.[J]. Comparative Biochemistry and Physiology Part B,2005,141 : 196-210.
[11]  Fullarton J G, Dando P R, Sargent J R, et al. Fatty acids of hydrothermal vent Ridgeia piscesae and inshore bivalves containing symbiotic bacteria[J]. Journal of Marine Biological Association of United Kingdom, 1995,75:455-468.
[12]  Pranal V, Fiala-Mediont A, Guezennec J. Fatty acid characteristics in two symbiotic gastropods from a deep hydrothermal vent of the West Pacific[J]. Marine ecology progress series, 1996,142:175-184.
[13]  Colaco A, Desbruyeres D, Guezennec J. Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community[J]. Marine Ecology,2007,28(1): 15-24.
[14]  Conway N, Capuzzo J M. Incorporation and utilization of bacterial lipids in the Solemya velum symbiosis[J]. Marine Biology, 1991, 108:277-291.
[15]  Fullarton J G, Wood A P, Sargent J R. Fatty acid composition of lipids from sulphur-oxidizing and methylotrophic bacteria from Thyasirid and Lucinid bivalves[J]. Journal of the Marine Biological Association of the United Kingdom, 1995,75:445-454.
[16]  Pond D W, Bell M V, Dixon D R, et al. Stable-carbonisotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic and thiotrophic bacterial endosymbionts[J]. Applied and Environmental Microbiology, 1998, 64:370- 375.
[17]  White D C, Pinkart H C, Ringelberg A B. Biomass measurements: biochemical approaches[A]. In: Hurst C J, Knudson G R, Mclnerney M J, et al.(Eds). Manual of Environmental Microbiology[C]. Washington: ASM Press, 1995,91-101.
[18]  Rutters H, Sass J, Cypionka H, et al. Phospholipid analysis as a tool to study complex microbial communities in marine sediments[J]. Journal of Microbiological Methods, 2002,48:149-160.
[19]  Edlund A, Nichols P D, Roffey P D, et al. Extractable and lipopolysaccharide fatty acid and hydroxyl acid profiles from Desulfovibrio species[J]. Journal of lipid Research, 1985,26:982-988.
[20]  Dowling N J E, Widdel F, White D C. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducing bacteria and other sulfide-forming bacteria[J]. Journal of General Merobiology. 1986,132: 1 815-1 825.
[21]  Fisher C R. Chemoautotrophic and methanotrophic symbionts in marine invertebrates[J]. Aquatic Sciences, 1990, 2:399-436.
[22]  Pond D V, Dixon D R, Bell M V, et al. Occurrence of 16:2(n-4) and 18:2(n-4) fatty acids in the lipids of the hydrothermal vent shrimps Rimicaris exoculata and Alvinocaris markensis:nutritional and trophic implications[J]. Marine ecology progress series, 1997,156:167-174.
[23]  Pond D W, Segonzac M, Bell M V, et al. Lipid and lipid carbon stable isotope composition of the hydrothermal vent shrimp Mirocaris fortunata: evidence for nutritional dependence on photosynthetically fixed carbon[J].Marine Ecology progress series, 1997, 157:221-231.
[24]  Burd B J, Thomson R E, Jamieson G S. Composition of a deep-scattering layer overlying a mid-ocean ridge hydrothermal plume[J]. Marine Biology, 1992,113:517-526.
[25]  Burd B J, Thomson R E. Distribution of zooplankton associated with the Endeavour Ridge hydrothermal plume[J]. Journal of plankton research,1995,17:965- 997.
[26]  Wakeham S G, Cowen J P, Burd B J, et al. Lipid-rich ascending particles from the hydrothermal plume at Endeavour Segment, Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta,2001,65(6):923-939.
[27]  Brault M, Marry J C, Saliot A. Fatty acids from particulate matter and sediment in hydrothermal environments from the east Pacific rise near 13°N[J]. Organic Geochemistry, 1984,6:217-222.
[28]  Brault M, Marry J C, Saliot A. Fatty acids from particulate matter and sediment in hydrothermal environments from the east Pacific rise near 13°N[J]. Organic Geochemistry, 1984,6:217-222.
[29]  Findlay R H, Trexler M B, Guckert J B, et al. Laboratory study of disturbance in marine sediments:response of a microbial community[J]. Marine Ecology Progress Series,1990,62:121-133.
[30]  Peresypkin V I, Lein A Y, Bogdanov Y A. On the nature of lipids in hydrothermal formations at the Broken Spur and the vent field of the Mid-Atlantic ridge[J]. Exploration and Mining Geology, 1999,8(3,4):365-377.
[31]  Schrenk M O, Kelley D S, Delaney J R, et al. Incidence and Diversity of Microorganisms within the Walls of an Active Deep-Sea Sulfide Chimney[J]. Applied and Environmental Microbiology,2003,69(6):3 580-3 592.
[32]  Simoneit B R T, Lein A Y, Peresypkin V I, et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N)[J]. Geochimica et Cosmochimica Acta,2004, 68(10):2 275-2 294.
[33]  Ratnayake N P, Suzuki N, Matsubara M. Sources of long chain fatty acids in deep sea sediments from the Bering Sea and the North Pacific Ocean[J]. Organic Geochemistry,2005,36:531-541
[34]  Okuyama H, Orikasa Y, Nishida T, et al. Bacterial Genes Responsible for the Biosynthesis of Eicosapentaenoic and Docosahexaenoic Acids and Their Heterologous Expression[J].Applied and Environmental Microbiology,2007, 73(3):665-670.
[35]  Beatty J T, Overmann J, Lince M T, et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent[J]. Proceedings of the National Academy of Sciences,2005,102:9 306-9 310.
[36]  Li Yi-liANG, Peacock A D, White D C. Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico[J]. Chemical Geology,2007,238:168-179.
[37]  Ringelberg D B, Sutton S, White D C. Biomass, bioactivity and biodiversity: microbial ecology of the deep subsurface: analysis of ester-linked phospholipids fatty acids[J]. FEMS Microbiology Ecology, 1997,20: 371-377.
[38]  Zhang C L, Huang Z Y, Cantu J, et al. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico[J]. Applied and Environmental Microbiology, 2005,71:2 106-2 112.
[39]  Kaneda T.Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance[J]. Microbiology Review, 1991,55:288-302.
[40]  Delong E F, Yayanos A A. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure[J]. Science 1985,228(31):1 101-1 103.
[41]  Kaya J Z, Baross J A. Synchronous effects of tempera- ture,hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments[J]. Applied and Environmental Microbiology,2004,70(10):6 220-6 229.
[42]  Pond D W, Allen C E, Bell M V, et al. Origins of longchain polyunsaturated fatty acids in the hydrothermal vent worms Ridgea piscesae and Protis hydrothermica[J]. Marine ecology progress series,2002,225:219-226.
[43]  Ben-Mlih F, Marty J C, Fiala-Me\\' dioni A. Fatty acid composition in deep hydrothermal vent symbiotic bivalves[J]. Journal of Lipid Research, 1992,33:1 797-1 806.
[44]  Hiroaki S. Identification of novel n-4 series polyunsaturated fatty acids in a deep-sea clam, Calyptogena phaseoliformis[J]. Journal of Chromatography A,2007,1 163(1-2): 247-259.
[45]  Dclong E F, Yayanos A A. Biochemical function and ecological significance of novel bacterial Lipid in deep-sea prokaryotes[J].Applied and Environmental Microbiology, 1986,51:730-737.
[46]  Phleger F, Nelson M M, Groce A K. Lipid biomarkers of deep-sea hydrothermal vent polychaetes-Alvinella Pompejana, A. caudate, Paralvinella grasslei and Hesiolyra bergii[J]. Deep-sea Research I,2005,52:2 333-2 352.
[47]  Konneke M, Widdel F. Effect of growth temperature on celluar fatty acids in sulphate-reducing bacteria[J]. Environmental Microbiology,2003,5:1 063-1 070.
[48]  Londry K L, Des marais D J. Stable carbon isotope fractionation by sulfate-reducing bacteria[J]. Applied and Environmental Microbiology,2004,69:2 942-2 949.
[49]  Parkes R J, Dowling N J E, WHITE D C, et al. Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction[J]. FEMS Microbiology Ecology, 1993,102:235-250.
[50]  Kohring L L, Ringelberg D B, Devereux R, et al. Comparison of phylogenetic relationship based on phospholipid fatty acid procles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria[J]. FEMS Microbiol,1994, 119:303-308.
[51]  Nunoura T, Oida H, Miyazaki M, et al. Desulfothermus okinawensis sp. nov., a thermophilic and heterotrophic sulfate-reducing bacterium isolated from a deep-sea hydrothermal field[J]. International Journal of Systematic and Evolutionary Microbiology,2007, 57(10):2 360-2 364.
[52]  Jahnke L L, Summons R E, Dowling L M, et al. Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis[J]. Applied and Environmental Microbiology,1995,61(2):576-582.
[53]  Nichols P D, mancuso C A, White D C. Measurement of methanotroph and methanogen signature phosopholipids for use in assessment of biomass and community structure in model systems[J].Organie Geochemistry,1987,11(6): 451-461.
[54]  Conway N, Mcdowell C J. The use of biochemical indicators in the study of trophic interactions in animal- bacteria symbiosis: Solemya velum, a case study[A]. In:Barnes M, Gibson R-N,Trophic Relationships in the Marine Environment[C]. Aberdeen: Aberdeen University Press,1990.553-564.
[55]  Rau G H. hydrothermal vent clam and vent tubeworm ^13C/^12C:Further evidence of a nonphotosynthetic food source[J]. Science, 1981, 213: 338-339.
[56]  Rau G H. hydrothermal vent clam and vent tubeworm ^13C/^12C:Further evidence of a nonphotosynthetic food source[J]. Science, 1981, 213: 338-339.
[57]  Allen C E, Tyler P A, Van dover C L. Lipid composition of the hydrothermal vent clam Calyptogena pacifica (Mollusca:Bivalvia) as a trophic indicator[J]. Journal of the Marine Biological Association of the United Kingdom,2001,81:817-821.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133