全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
海洋科学  2003 

海洋浮游植物粒径组成及其生物粒径效应研究

, PP. 5-9

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  李永祺 丁美丽.海洋污染生物学[M].北京:海洋出版社,1991.504.
[2]  孙军 刘东艳.浮游植物生物量研究:Ⅱ.胶州湾网采浮游植物细胞体积转换生物量[J].海洋学报,2000,22(1):102-109,.
[3]  孙书存 陆健健.流式细胞仪在微型浮游植物生态学中的应用[J].生态学杂志,2000,19(1):72-78,.
[4]  陈怀清 钱树本.青岛近海微型,超微型浮游藻类的研究[J].海洋学报,1992,14(3):105-113,.
[5]  刘子琳 宁修仁.北部湾浮游植物粒径分级叶绿素a和初级生产力的分布特征[J].海洋学报,1998,20(1):50-57,.
[6]  刘子琳 史君贤.南极夏季普里兹湾邻近海域浮游植物,粒度分级叶绿素a和初级生产力的分布[J].极地研究,1997,9(1):18-27,.
[7]  孙军 刘东艳 钱树本.浮游植物生物量研究Ⅱ[J].海洋学报,2000,(增刊):293-299.
[8]  蔡昱明 宁修仁 等.珠江口初级生产力和新生产力研究[J].海洋学报,2002,24(3):101-111,.
[9]  江玉 韩秀荣 等.海洋浮游植物对2—甲基萘的生物富集研究[J].青岛海洋大学学报:自然科学版,2002,32(1):101-106,.
[10]  孙儒泳 李庆芬 牛翠娟 等.基础生态学[M].北京:高等教育出版社,2002.191- 192.
[11]  Santanu R. Optimization of exergy and implications of body sizes of phytoplankton and zooplankton in an aquatic ecosystem model. Ecological Modelling, 2001, 140: 219- 234.
[12]  Andrea B, James H B. Oceanes under the macroscope.Natrure, 2002, 419: 128-129.
[13]  Li W K W. Macroecological pattems of phytoplankton in the northwestem North Atlantic Ocean. Nature, 2002, 419:154- 157.
[14]  Sheldon R W, Parsons T R. A continuous size spectnma for particulate matter in the .sea. J Fish Res Board Can, 1967,24:909-915.
[15]  Sheldon R W, Prakash A, Surcliffe W H Jr. The size distribution of particles in the oceans. Limnol Oceanogr, 1972,17: 327- 340.
[16]  Kerr S R. Theory of size distribution in ecological communities. J Fish Res Board Can, 1974, 31 : 1 859 - 1 862.
[17]  Morel A, Antoine D.Small critters - big effects. Science,2002, 296(5 575) : 1 980- 1 982.
[18]  Montagnes D J S, Beiges J A, Harrison P J, et al. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanngr, 1994,39 (5): 1 044-1060.
[19]  Garde K, Cailliau C. The impact of UV - B radiation and different PAR intensities on growth, uptake of 14C, excretion of DOC, cell volume, and pigmentation in the marine prymnesiophyte, Emiliania huxleyi. Journal of Experimental Marine Biology and Ecology, 2000, 247: 99- 112.
[20]  Edler L. Recommendations on methods for marine biological studies in the Baltic Sea. In : Phytoplarlkton and Chlorophyll.Baltic: Marine Biologists Publication, 1979, 5:38 -48.
[21]  陈小霞 吴振强 梁世中.藻类对微量元素的生物富集极其机理探讨[J].食品与发酵工业,1995,25(4):56-60.
[22]  王修林 马延军 郁伟军.海洋浮游植物的生物富集热力学模型—对疏水性污染有机物生物富集双箱热力学模型[J].青岛海洋大学学报,1998,28(2):299-306.
[23]  彦昌敬.植物组织培养手册[M].上海:上海科学技术出版社,1990,1..
[24]  Rott E. Sane results from phytoplankton counting intercalibrations. Schweis Hydrol, 1981, 43: 34-62.
[25]  Weibel E R. Stero legical principles for morphometry in electron microscopy, Int Rev Cytol, 1969, 26: 235- 302.
[26]  Billones R G. Image analysis as a tool for measuring particulate matter concentrations and gut content, bodysize, and clearance rates of estrarine copepods : validation and application. Journal of Marine Systems, 1999, 22 : 179 - 194.
[27]  Waite A. New measurements of phytoplankton aggregation in a flocculator using videography and image analysis. Marine Ecology Progress Series, 1997, 155:77-88.
[28]  Gilek M, Tackx M L M, Flachier A T, et al. Influence of body size on the uptake, depuration, and bioacctmaulation of polychlorinated biphenyl congeners by Baltic Sea blue mussels, Mytilus edulis. Marine Biology, 1996, 125: 499-510.
[29]  Arakawa H, Yaoit T, Koike T, et al. Size of suspended particles caught by Manila clam, Ruditapes philippinarum.Morinaga 12 Mer, 1997, 35(4) : 149 - 156.
[30]  Paau As, Uro J C J R. Applications of flow cytometry to the study of algal cells and isolated chloroplasts. J Exp Bot,1978, 29:1 011- 1 022.
[31]  Wang X L, Ma Y J, Su Y L. Determining the surface area of marine phytoplankton cells by acid - base titration.Chemosphere, 1997, 35:1 131-1 141.
[32]  Wang X L, Zauke G P. Relationship between growth parameters of the amphipod Gammarus zaddachi (Sexton 1912) and the permeable body surface area determined by the acid - base titration method. Hydrobiolgia, 2002,482 ( Iss 1-3): 179-189.
[33]  Gosselin M, Levasseur M, Wheeler P A, et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep- Sea Research part Ⅱ , 1997, 44(8)1 623- 1 644.
[34]  Wang H L, Huang B Q, Hong H S. Size - frationated productivity and nutrient dynamics of phytoplankton in subtropical coastal environments. Hydrobiologia, 1997, 352:97- 106.
[35]  Slaalapyonok A, Olson R J, Slaalspyonok L S. Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep - Sea Research Ⅱ, 2001, 48:1 231-1 261.
[36]  Lee Chen Y L. Ccraparisons of primary productivity and phytoplankton size structure in the marginal regions of southern East China Sea. Continental Shelf Research, 2000, 20:437 - 458.
[37]  Agawin N S R, Duarte C M, Agusti S. Nutriem and temperature control of picoplankton to phytoplankton biomass and production. Limnol Oceancgr, 2000, 45(3): 591-600.
[38]  Agawin N S R, Duarte C M. Agusti S. Response of Mediterranean Synechococcus growth and loss rates to experimental nutrient inputs. Mar Ecol Prog Ser, 2000, 20697- 106.
[39]  Hein M, Riemann B. Nutriem limitation of phytoplankton biomass or growth rate : an experimental approach using marine enclosures. Journal of Experimental Marine Biology and Ecology, 1995, 188: 167-180.
[40]  Herbert E A, Carol B, Thomas D B. An algal assay method for detemaination of copper complexation capacities of natural waters. Bull Environ Contarn Toxiclo, 1983, 30 : 448 - 455.
[41]  Kaladharan P. Inhibition of primary production as induced by heavy metal ions on phytoplankton population of Cochin.Indian J Fish, 1990, 37(1) : 51 - 54.
[42]  Bolanos L. Differential toxicological response to Cd in An absena strain FCC 7119 growth with NO 3 of NH 4 as nitnzgen source. J Plant Playsiol, 1992, 140(3) : 345 - 349.
[43]  Klotz R L. Algal response to copper under riverine conditions. Environ Pollut Series A, 1981, 24(1) : 1 - 19.
[44]  Copelo S. Effect of lead on the uptake of nutrients by unicellular algae. Water Res, 1993, 27(10) : 1 563 - 1 568.
[45]  Suttle C A, Cochlan W P, Stockner J G. Size - dependent ammonium and phosphate uptake, and N: P supply ratios in an Oligotrophic Lake. Can J Fish Aquat Sci, 1991, 48:1 226- 1 234.
[46]  Sunda W G, Huntsman S A. Interrelated influence of iron,light and cell size on marine phytoplankton growth. Nature (C), 1997, 390(6658) : 389- 392.
[47]  Sunda W G, Huntsman S A. lrcm uptake and growth limitation in oceanic and coastal phytoplankton. Marine Chem, 1995, 50:189-206.
[48]  Wang X L, MaY J, Yu W J, et al. Two- compartment thermodynamic model for bioconcentration of hydrophobic organic chemicals by alga: Quantitative relationship between bioconcentration factor and surface area of marine algae or octanol/water partition coefficiem. Chemosphere, 1997, 35(8): 1781-1797.
[49]  Morelli E, Scarano G. Synthesis and stability of phytochelatins induced by cadmitum and lead in the marine diatom Phaeodactylum tricornutum. Marine Environmental Research,2001, 52: 383-395.
[50]  刘子琳 蔡昱明.象山港中,西部秋季浮游植物粒径分级,叶绿素α和初级生产力[J].东海海洋,1998,16(3):18-24,.
[51]  刘子琳 蔡昱明 等.1998/1999年南极夏季普里兹湾及北部海区叶绿素a和初级生产力的分布特征[J].极地研究,2002,14(1):12-21,.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133