全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳纳米管电极原位产生过氧化氢及其对亚甲基蓝脱色效果

Keywords: 碳纳米管,过氧化氢,活性电极,亚甲基蓝

Full-Text   Cite this paper   Add to My Lib

Abstract:

将碳纳米管固定化制成多孔疏水性导电薄膜构建电化学阴极还原体系,实现过氧化氢在阴极的原位产生。电极特性研究表明,电极在较宽的电压范围内均具有较好的活性。考察了阴极电位、电极成分、氧气流量和电解质浓度对过氧化氢原位产生的影响,在优化条件下经过120min后过氧化氢达到66.17mg/L,并探讨过氧化氢原位产生的机理。在此基础上考察原位过氧化氢氧化工艺下对亚甲基蓝的脱色效果,并分析其脱色机理。

References

[1]  Comninellis C., Pulgarin C. Anodic oxidation of phenol for waste water treatment. J. Appl. Electrochem., 1991, 21(8): 703-708
[2]  Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta,1994,39(11-12): 1857-1862
[3]  Bond A.M. 200 years of practical electroanalytical chemistry: Past, present and future directions illustrated by reference to the on-line, on-stream and off-line deter-mination of trace metals in zinc plant electrolyte by voltammetric and potentiometric techniques. Analytica Chimica Acta, 1999, 400(1): 333-379
[4]  Zhou M. H., Dai Q. Z., Lei L. C., et al. Long life modified lead dioxide anode for organic wastewater treatment: Electrochemical characteristics and degradation mechanism. Environ. Sci. Technol., 2005, 39(1): 363-370
[5]  Quiroz M. A., Reyna S. Electrocatalytic oxidation of P-Ni trophenol from aqueous solutions at Pb/PbO2 anodes. Appl. Catal. B: Environ., 2005, 59(3-4): 259-266
[6]  Waterston K., Bejan D., Bunce N. J.Electrochemical oxidation of sulfide ion at a boron-doped diamond anode. J. Appl. Electrochem., 2007, 37(3): 367-373
[7]  Drogui P., Elmaleh S., Rumeau M., et al. Hydrogen peroxide production by water electrolysis: Application to disinfection. J. Appl. Electrochem., 2001, 31(8): 877-882
[8]  Yuan S.H., Tian M., Cui Y.P., et al. Treatment of nitrophenols by cathode reduction and electro-Fenton methods. J. Hazard. Mater., 2006, 137(1): 573-580
[9]  Chen C. L., Wang X. K., Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ. Sci. Technol., 2009, 43(7): 2362-2367
[10]  Chen G. H. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol., 2004, 38(1):11-41
[11]  Qiang Z. M., Chang J. H., Huang C. P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res., 2002, 36(1): 85-94
[12]  Ventura A., Jacquet G., Bermond A., et al. Electrochemical generation of the Fenton\'s reagent: Application to atrazine degradation. Water Res., 2002, 36(14): 3517-3522
[13]  Sanroman M. A., Pazos M., Ricart M. T., et al. Electrochemical decolourisation of structurally different dyes. Chemosphere, 2004, 57(3): 233-239
[14]  Christie R. M. Color Chemistry. London: The Royal Society of Chemistry Press, 2001
[15]  Bechtold T., Mader C., Mader J. Cathodic decolourization of textile dyebaths: Tests with full scale plant. J. Appl. Electrochem., 2002, 32(8): 943-950
[16]  Heiz U., Landman U. Nanocatalysis. Berlin: Springer-Verlag Berlin, 2007
[17]  Juarez B. H., Meyns M., Chanaewa A., et al. Carbon supported CdSe nanocrystals. J. Am. Chem. Soc., 2008, 130(46): 15282-15284
[18]  Wang Y., Song S., Maragou V., et al. High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction. Appl. Catal. B: Environ., 2009, 89(1-2): 223-228
[19]  Xie X., Gao L., Sun J., et al. The effect of electro-degradation processing on microstructure of polyaniline/single-wall carbon nanotube composite films. Carbon, 2008, 46(8): 1145-1151
[20]  Yao Y., Li G., Ciston S., et al. Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity. Environ. Sci. Technol., 2008, 42(13): 4952-4957
[21]  Wang S., Gong Q. M., Liang J. Sonophotocatalytic degradation of methyl orange by carbon nanotube/TiO2 in aqueous solutions. Ultrason. Sonochem., 2009, 16(2): 205-208

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133