|
环境工程学报 2013
基于改进型灰色神经网络组合模型的空气质量预测Keywords: 灰色GM(1,1)模型,传统灰色神经网络组合模型,改进型灰色神经网络组合模型,预测,空气质量 Abstract: 基于空气质量数据不足及波动较大的情况,将灰色GM(1,1)模型与人工神经网络模型组合并改进,建立改进型灰色神经网络组合模型。利用天津市2001—2008年PM10、SO2和NO2年均值作为原始数据预测2009—2010年PM10、SO2和NO2的浓度以进行模型精度检验,最后利用该模型预测2011—2015年天津市空气质量状况。结果表明,与灰色GM(1,1)模型、传统灰色神经网络组合模型相比,所建立的改进型灰色神经网络组合模型相对模拟误差小,预测结果更为可靠,可以用于空气质量预测。
|