Water U. K. Sustainability indicators 2009-10 report. http://www.water.org.uk/home/policy/publications/archive/sustainability/2009-10-report
[2]
Shanmugam A. S., Akunna J. C. Comparing the performance of UASB and GRABBR treating low strength wastewaters. Water Science and Technology, 2008, 58(1):225-232
[3]
Foresti L. Anaerobic treatment of domestic sewage: established technologies and perspectives. Water Science and Technology, 2002, 45(10):181-186
[4]
Aiyuk S., Forrez I., Lieven de K., et al. Anaerobic and complementary treatment of domestic sewage in regions with hot climates:A review. Bioresource Technology, 2006, 97(17):2225-2241
[5]
Eaton A. D., Clesceri L. S., Rice E. W., et al. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington DC, 2005
[6]
贺延龄. 废水的厌氧生物处理. 北京:中国轻工业出版社, 1998.538-543
[7]
Li X. Y., Yang S. F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research, 2007, 41(5):1022-1030
[8]
Olson B. J. S. C., Markwell J. Assays for determination of protein concentration. Current Protocols in Protein Science, 2007, 48(Supplement):1-29
[9]
Speece R. E., Boonyakitsombut S., Kim M., et al. Overview of anaerobic treatment: thermophilic and propionate implications. Water Environment and Research, 2006, 78(5):460-437
[10]
Inanc B., Matsui S., Ide S. Propionic acid accumulation in anaerobic digestion of carbohydrates: An investigation on the role of hydrogen gas. Water Science and Technology, 1999, 40(1):93-100
[11]
Lin H. J., Xie K., Mahendran B., et al. Factors affecting sludge cake formation in a submerged anaerobic membrane bioreactor. Journal of Membrane Science, 2010, 361(1-2):126-134
[12]
Ni B. J., Rittmann B. E., Yu H. Q. Soluble microbial products and their implications in mixed culture biotechnology. Trends in Biotechnology, 2011, 29(9):454-463
[13]
Ramesh A., Lee D. J., Hong S. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Applied Microbiology and Biotechnology, 2006, 73(1):219-225
[14]
Xu H., He P., Wang G., et al. Three-dimensional excitation emission matrix fluorescence spectroscopy and gel-permeating chromatography to characterize extracellular polymeric substances in aerobic granulation. Water Science and Technology, 2010, 61(11):2931-2942
[15]
Peng G., Ye F., Li Y. Investigation of extracellular polymer substances (EPS) and physicochemical properties of activated sludge from different municipal and industrial wastewater treatment plants. Environmental Technology, 2012, 33(8):857-863
[16]
Wang X., Zhang B., Shen Z., et al. The EPS characteristics of sludge in an aerobic granule membrane bioreactor. Bioresource Technology, 2010, 101(21):8046-8050
[17]
Converti A., Del Borghi M., Ferraiolo G. Influence of organic loading rate on the anaerobic treatment of high strength semisynthetic waste waters in a biological fluidized bed. The Chemical Engineering Journal, 1993, 52(1):B21-B28
[18]
Zhou W. L., Wu B. T., She Q. H., et al. Investigation of soluble microbial products in a full-scale UASB reactor running at low organic loading rate. Bioresource Technology, 2009, 100(14):3471-3476
[19]
Florencio L., Kato M. T., de Morals J. C. Domestic sewage treatment in full-scale UASBB plant at Mangueira, Recife, Pernambuco. Water Science and Technolog, 2001, 44(4):71-77
[20]
杨凌波, 曾思育, 鞠宇平, 等. 我国城市污水处理厂能耗规律的统计分析与定量识别. 给水排水, 2008, 34(10):42-45 Yang L. B., Zeng S. Y., Ju Y. P., et al. Statistical analysis and quantitative recognition of energy consumption of municipal wastewater treatment plants in China. Water and Wastewater Engineering, 2008, 34(10):42-45(in Chinese)
[21]
Azbar N., Tutuk F., Keskin T. Effect of organic loading rate on the performance of an up-flow anaerobic sludge blanket reactor treating olive mill effluent. Biotechnology and Bioprocess Engineering, 2009, 14(1):99-104
[22]
Show K. Y., Tay J. H., Yang L., et al. Effects of stressed loading on startup and granulation in upflow anaerobic sludge blanket reactors. Journal of Environmental Engineering, 2004, 130(7):743-750
[23]
Khalil N., Sinha R., Raghav A. K., et al. UASB technology for sewage treatment in India: Experience, economic evaluation and its potential in other developing countries. Twelfth International Water Technology Conference, IWTC12, 2008, Alexandria, Egypt: 2008.1411-1427
[24]
Singh K. S., Harada H., Viraraghavan T. Low-strength wastewater treatment by a UASB reactor. Bioresource Technology, 1996, 55(3):187-194
[25]
Ludwig T. G., Goldberg H. J. V. The anthrone method for the determination of carbohydrates in foods and in oral rinsing. Journal of Dental Research, 1956, 35(1):90-94
[26]
Liu Y., Liu H., Cui L., et al. The ratio of food-to-microorganism (F/M) on membrane fouling of anaerobic membrane bioreactors treating low-strength wastewater. Desalination, 2012, 297:97-103
[27]
Sánchez E., Borja R., Travieso L., et al. Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresource Technology, 2005, 96(3):335-344
[28]
Wijekoon K. C., Visvanathan C., Abeynayaka A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 2011, 102(9):5353-5360