全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阴极负载不同催化剂对天然水体中沉积物微生物燃料电池运行特性的影响

Keywords: 沉积物微生物燃料电池,阴极修饰,烧失量,易氧化有机质

Full-Text   Cite this paper   Add to My Lib

Abstract:

考察了阴极负载Co3O4和MnOOH对天然水体中沉积物微生物燃料电池(SMFC)产电性能和SMFC对沉积物中有机质去除率的影响。实验结果表明,SMFC阴极负载Co3O4和MnOOH后,体系的输出电压由483mV增大到549mV和534mV;相应体系的内阻由206Ω显著降低到99Ω和128Ω,最大功率密度(Pmax)由3.3mW/m2增大到9.1mW/m2和6.6mW/m2。此外,SMFC体系的电流密度与沉积物中烧失量(LOI)、易氧化有机质(ROOM)去除率呈线性关系,并且阴极负载Co3O4和MnOOH可以促进阳极沉积物中有机质的去除。

References

[1]  Logan B. E., Hameler S. B., Rozendal R. A., et al. Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 2006, 40(17):5181-5192
[2]  Song T. S., Yan Z. S., Zhao Z. W., et al. Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess and Biosystems Engineering, 2011, 34(5):621-627
[3]  Hai P. T., Jang J. K., Chang I. S., et al. Improvement of cathode reaction of a mediatorless microbial fuel cell. Journal of Microbiology and Biotechnology, 2004, 14(2):324-329
[4]  Yang S. Q., Jia B. Y., Liu H. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresource Technology, 2009, 100(3):1197-1202
[5]  Zhang L., Liu C., Zhuang L., et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosensors and Bioelectronics, 2009, 24(9):2825-2829
[6]  Roche I., Katuri K., Scott K. A microbial fuel cell using manganese oxide oxygen reduction catalysts. Journal of Applied Electrochemistry, 2010, 40(1):13-21
[7]  Xu J. B., Gao P., Zhao T. S., et al. Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environmental Science, 2012, 5(1):5333-5339
[8]  Sun W., Hsu A., Chen R. R. Carbon-supported tetragonal MnOOH catalysts for oxygen reduction reaction in alkaline media. Journal of Power Sources, 2011, 196(2):627-635
[9]  Yang J., Liu H. W., Martens W. N., et al. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. The Journal of Physical Chemistry C, 2010, 114(1):111-119
[10]  Xi G. C., Peng Y. Y., Zhu Y. C., et al. Preparation of β-MnO2 nanorods through a γ-MnOOH precursor route. Materials Research Bulletin, 2004, 39(11):1641-1648
[11]  梁鹏, 范明志, 曹效鑫, 等.微生物燃料电池表观内阻的构成和测量. 环境科学, 2007, 28(8):1894-1898 Liang P., Fan M. Z., Cao X. X., et al. Composition and measurement of the apparent internal resistance in microbial fuel cell. Environmental Science, 2007, 28(8):1894-1898(in Chinese)
[12]  Loring D. H., Rantala R. T. T. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Reviews, 1992, 32(4):235-283
[13]  Raghavulu S. V., Babu P. S., Goud R. K., et al. Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: Process evaluation through electro-kinetic analysis. RSC Advances, 2012, 2(2):677-688
[14]  Renslow R., Donovan C., Shim M., et al. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells. Physical Chemistry Chemical Physics, 2011, 13(48):21573-21584
[15]  Fan Y. Z., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science & Technology, 2008, 42(21):8101-8107
[16]  卢娜, 周顺桂, 倪晋仁.微生物燃料电池的产电机制. 化学进展, 2008, 20(7-8):1233-1240 Lu N., Zhou S. G., Ni J. R. Mechanism of energy generation of microbial fuel cells. Progress in Chemistry, 2008, 20(7-8):1233-1240(in Chinese)
[17]  Jadhav G. S., Ghangrekar M. M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 2009, 100(2):717-723

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133