全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硫化物对污水处理厂硝化菌活性的抑制作用

Keywords: 硫化物,硝化菌,抑制,污水处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

建于城市远郊区的污水处理厂由于长距离管道输送污水中通常含有一定浓度的硫化物。通过郊区和城区污水处理厂硝化菌最大比增长速率常数(μA)的测定和硫化物抑制实验研究了硫化物对硝化菌活性的影响。经测定,位于郊区的白龙港污水处理厂15、20和25℃下μA值分别为0.19d-1、0.50d-1和0.72d-1,而15℃和20℃下位于市区的曲阳厂μA值分别为0.41d-1和0.80d-1。通过向曲阳厂污泥中加入硫化钠和氯化钠的实验发现,低浓度钠离子对硝化菌活性没有明显的抑制作用;而硫化物在曝气条件下直接与污泥接触对硝化菌活性几乎没有影响,但不曝气混合接触后再曝气则硝化菌μA值将下降50%左右。硫化物的抑制作用很可能是白龙港厂硝化菌μA值明显低于曲阳厂实测值和文献报道值的原因。

References

[1]  傅利, 周振, 王新华, 等. 污水管道中硫循环三阶段模型研究综述. 环境科学与管理, 2009, 34 (2): 96-100 Fu L., Zhou Z., Wang X., et al. Review on the three-stage models of sulfur cycle in sewers. Environmental Science and Management, 2009, 34 (2): 96-100 (in Chinese)
[2]  Sears K., Alleman J. E., Barnard J. L., et al. Impacts of reduced sulfur components on active and resting ammonia oxidizers. Journal of Indian Microbiology and Biotechnology,2004, 31(8): 369-378
[3]  Henze M., Gujer W., Mino M., et al. Activated Sludge Models ASM1, ASM2, ASM2 d and ASM3. London: IWA Publishing, 2000
[4]  周振, 孔卉, 王英俊, 等. 污水厂运行监控与故障诊断专家系统的研发与应用. 中国给水排水, 2011, 27(5): 1-5 Zhou Z., Kong H., Wang Y., et al. Development and application of expert system for operation monitoring and fault diagnosis in wastewater treatment plant. China Water & Wastewater, 2011, 27(5): 1-5 (in Chinese)
[5]  吴志超, 唐书娟, 周振, 等. 污水处理厂自养菌生长动力学参数的测定研究. 中国给水排水, 2009, 25(9): 41-44 Wu Z., Tang S. J., Zhou Z., et al. Determination of kinetic parameters of autotrophic bacteria from wastewater treatment plant. China Water & Wastewater, 2009, 25(9): 41-44 (in Chinese)
[6]  中国国家环境保护总局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002
[7]  Head M. A., Oleszkiewicz J. A. Bioaugmentation for nitrification at cold temperatures. Water Research,2004, 38(3): 523-530
[8]  Siegrist H., Brunner I., Koch G., et al. Reduction of biomass decay rate under anoxic and anaerobic conditions. Water Science and Technology, 1999, 39(1): 129-137
[9]  Nowak O., Schweighofer P., Svardal K. Nitrification inhibition-a method for the estimation of actual maximum autotrophic growth rates in activated sludge systems. Water Science and Technology, 1994, 30(6): 9-19
[10]  Salem S., Moussa M. S., van Loosdrecht M. C. M. Determination of the decay rate of nitrifying bacteria. Biotechnology and Bioengineering, 2006, 94(2): 252-262
[11]  Antonio P., Hamilton J., Koopman B., et al. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Research, 1990, 24(1): 97-101
[12]  McCarty G. W. Modes of action of nitrification inhibitors. Biology and Fertility of Soils, 1999, 29(1): 1-9
[13]  Juliastuti S. R., Baeyens J., Creemers C., et al. The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge. Journal of Hazardous Materials, 2003, 100(1-3): 271-283
[14]  王法东, 黄勇, 高宏. 重金属对A/O 生物脱氮系统的毒性影响. 沈阳建筑工程学院学报(自然科学版), 2003, 19(2): 154-155 Wang F. D., Huang Y., Gao H. Poison influence of heavy metal on A/O biology system. Journal of Shenyang Architecture and Civil Engineering (Natural Science), 2003, 19(2): 154-155 (in Chinese)
[15]  李娟英, 赵庆祥, 江敏. 苯酚及其衍生物对氨氮生物硝化的抑制研究. 环境工程学报, 2008, 2(1): 27-30 Li J. Y., Zhao Q. X., Jiang M. Inhibition of phenol and its derivatives on ammonia nitrification. Chinese Journal of Environmental Engineering, 2008, 2(1): 27-30 (in Chinese)
[16]  Boon A. G. Septicity in sewers: Causes, consequences and containment. Water Science and Technology, 1995, 31(7): 237-253

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133