全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

均匀电场下多环芳烃在土壤中的迁移

Keywords: 电场,电压梯度,多环芳烃,土壤,表面活性剂,迁移

Full-Text   Cite this paper   Add to My Lib

Abstract:

当循环电解液流速为800mL/h,电解液为无菌水时,电渗流流量、菲和芘在土壤中迁移量在电压梯度为1V/cm作用下比电压梯度为0.5V/cm时要多;电动注入表面活性剂Tween80和HPCD均可以提高菲和芘在土壤中的迁移,注入Tween80和HPCD浓度分别为500和1000mg/L时,相应地Phe提高5.8倍和11.7倍、芘提高2倍和3.4倍;而BaP在水中的溶解度太小,电场作用和电动注入表面活性剂对BaP在土壤中的迁移量影响很小。为建立电动修复有机污染物污染提供了技术基础。

References

[1]  Ko S. O., Schlautman M. A., Carraway E. R. Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environmental Science & Technology, 2000,34(8):1535-1541
[2]  Kim S. S., Han S. J. Application of an enhanced electrokinetic ion injection system to bioremediation. Water Air and Soil Pollution, 2003,146(1-4):365-377
[3]  刘光崧. 土壤理化分析与剖面描述. 北京:中国标准出版社, 1996.24
[4]  Yalkowsky S. H., Pinal R. Estimation of the aqueous solubility of complex organic compounds. Chemosphere, 1993,26(7):1-39
[5]  Shapiro A. P., Probstein R. F. Removal of contaminants form saturated clay by electroosmosis. Environmental Science & Technology, 1993,27(2):282-290
[6]  Reid B. J., Jones H. C. Bioavailability of persistent organic pollutants in soils and sediments a perspective on mechanisms, consequences and assessment. Environmental Pollution, 2000,108(1):103-112
[7]  马建伟, 王慧, 罗启仕,等. 利用电动技术强化有机污染土壤原位修复研究. 环境工程学报,2007,1(7):119-124 Ma J. W., Wang H., Luo Q. S., et al. Enhancement of in-situ remediation of organics by electrokinitics. Chinese Journal of Environmental Engineering, 2007,1(7):119-124(in Chinese)
[8]  R?hrs J., Ludwig G., Rahner D. Electrochemically induced reactions in soils—a new app roach to the in situ remediation of contaminated soils? Part 2: Remediation experiments with a natural soil containing highly chlorinated hydrocarbons. Electrochimica Acta, 2002,47(9):1405-1414
[9]  Saichek R. E., Reddy K. R. Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface environments. Journal of Environmental Engineering and Science, 2005,4(5):327-339
[10]  Saichek R. E., Reddy K. R. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere, 2003,51(4):273-287
[11]  Li A., Cheung K. A., Reddy K. R. Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene. Journal of Environmental Engeering, 2000,126(6):527-533
[12]  Reddy K. R., Saichek R. E. Effect of soil type on eletrokinetic removal of phenanthrene using surfactants and cosolvents. Journal of Environmental Engeering, 2003,129(4):336-346
[13]  Park J. Y., Lee H. H., Kim S. J., et al. Surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. Journal of Hazardous Materials, 2007,140(1-2):230-236
[14]  Niqui-Arroyo J., Bueno-Montes M., Posada-Baquero R.,et al. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil. Environmental Pollution, 2006,142(2):326-332
[15]  Zhu L., Chen B., Shen X. Sorption of phenol, p-nitrophenol, and aniline to dualcation organobentonites from water. Environmental Science & Technology, 2000,34(3):468-475
[16]  Edwards D.A., Adeel Z., Luthy R.G. Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environmental Science & Technology, 1994,28(8):1550-1560
[17]  Smith J. A., Sahoo D., Mclellan H. M., et al. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton X-100. Environmental Science & Technology, 1997,31(12):3565-3572

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133