全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抗菌处理对含硫煤矸石污染物释放的原位控制作用

Keywords: 抗菌处理,煤矸石,酸性矿山废水,污染控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

自然堆放过程中,矿山环境微生物对大量含硫矿物的氧化产酸发挥着重要作用,为评价抗菌处理对暴露于空气中煤矸石污染物质释放的影响,设置十二烷基硫酸钠(SDS)抗菌处理、苯甲酸钠(SBZ)抗菌处理和对照(CK)3种处理条件对含硫煤矸石进行连续淋溶实验。结果表明,对照处理煤矸石淋溶液具有较强的酸度(pH=2.2~2.8)、较高的电导率(EC=4426~24925μS/cm)和氧化还原电位(Eh=334~499mV),并富含Fe、Mn、Cu、Zn等金属离子和高浓度SO42-和F-(其中,总铁平均为636mg/L、Mn=16mg/L、硫酸根=4297mg/L),呈现出煤矿酸性废水(AMD)的典型污染特征。相对于对照处理,SDS和SBZ抗菌剂处理对暴露于空气中的煤矸石污染的释放具有极显著的抑制作用,抗菌处理后,煤矸石淋溶液的pH(pHSDS=3.30~3.47、pHSBZ=5.13~5.64)、电导率(ECSDS=6703~1177μS/cm、ECSBZ=669~19335μS/cm)、氧化还原电位(EhSDS=338~285mV、EhSBZ=118~230mV)和溶出离子Fe(总铁平均SDS=227mg/L、SBZ=7.0mg/L)、Mn(MnSDS=5.9mg/L、MnSBZ=6.9mg/L)、Cu、Zn等金属离子及阴离子SO42-和F-等特征污染物的浓度均与对照存在极显著的差异(p<0.01);且抗菌处理能显著抑制亚铁向高价铁的转化(pSDS=0.0012;pSBZ=0.0014)。2种抗菌剂处理均可极显著抑制暴露于空气中含硫煤矸石的氧化产酸和自身有毒有害污染物质的释放,且SBZ抗菌处理明显优于SDS抗菌处理。因此,SDS和SBZ等抗菌剂处理可用于含硫煤矸石等尾矿堆场污染的原位控制。

References

[1]  吴永贵, 林初夏, 童晓立, 等.大宝山矿水外排的环境影响:I.下游水生生态系统.生态环境, 2005, 14(2):165-168 Wu Yonggui, Lin Chuxia, Tong Xiaoli, et al.Environmental impacts of acid mine drainage from the Dabaoshan Mine:I.Downstream aquatic ecosystem.Ecology and Environment, 2005, 14(2):165-168(in Chinese)
[2]  Edwards K.J., Bond P.L., Gihring T.M., et al.An archaeal iron-oxidizing extreme acidophile important in acid mine drainage.Science, 2000, 287(5459):1796-1799
[3]  Singer P.C., Stumm W.Acidic mine drainage:the rate determining step.Science, 1970, 167(3921):1121-1123
[4]  夏金兰, 王春, 刘新星.抗菌剂及其抗菌机理.中南大学学报(自然科学版), 2004, 35(1):31-38 Xia Jinlan, Wang Chun, Liu Xinxing.Research on antimicrobial agents and their mechanisms of actions.J.Cent.South Univ.(Natural Science), 2004, 35(1):31-38(in Chinese)
[5]  Onysko S.J., Kleinmann R.L., Erickson P.M.Ferrous iron oxidation by Thiobacillus ferrooxidans:Inhibition with benzoic acid, sorbic acid, and sodium lauryl sulphate.Appl.Environ.Microbiol., 1984, 48(1):229-231
[6]  张哲, 党志, 舒小华.硫化物矿山尾矿生物氧化作用的抑制研究.环境工程学报, 2010, 4(5):1191-1195 Zhang Zhe, Dang Zhi, Shu Xiaohua.Study on the inhibition of biological oxidation in sulfide tailings.Chinese Journal of Environmental Engineering, 2010, 4(5):1191-1195(in Chinese)
[7]  方银军, 高慧, 蔡辉平.我国阴离子表面活性剂的现状和发展趋势.中国洗涤用品工业, 2007, (2):26-29 Fang Yinjun, Gao Hui, Cai Huiping.The status and trends of anionic surfactants in China.Surfactant Soap and Detergent, 2007, (2):26-29(in Chinese)
[8]  罗傲霜, 淳泽, 罗傲雪, 等.食品防腐剂的概况与发展.中国食品添加剂, 2005, (4):55-58 Luo Aoshuang, Chun Ze, Luo Aoxue, et al.Overview and development of food preservatives.China Food Additives, 2005, (4):55-58(in Chinese)
[9]  吴国华.我国节能减排的理性思考——基于"十一五"头两年节能减排目标完成情况的分析.山东财政学院学报, 2009, (3):7-11 Wu Guohua.Rational thinking about energy conservation in China.Acta Shandong Finance Institute, 2009, (3):7-11(in Chinese)
[10]  Akcil A., Koldas S.Acid mine drainage(AMD):Cause, treatment and case studies.Journal of Cleaner Production, 2006, 14(12-13):1139-1145
[11]  Baker B.J., Banfield J.F.Microbial communities in acid mine drainage.FEMS Microbiology Ecology, 2003, 44(2):139-152
[12]  Gray N.F.Environmental impact and remediation of acid mine drainage:A management problem.Environmental Geology, 1997, 30 (1-2):62-71
[13]  胡振琪, 张明亮, 马保国, 等.利用专性杀菌剂进行煤矸石山酸化污染原位控制实验.环境科学研究, 2008, 21(5):23-26 Hu Zhenqi, Zhang Mingliang, Ma Baoguo, et al.Selective bactericides for at-source pollution control of acid coal waste piles.Research of Environmental Sciences, 2008, 21(5):23-26(in Chinese)
[14]  唐启义.DPS数据处理系统——实验设计、统计分析及数据挖掘.北京:科学出版社, 2010
[15]  林初夏, 卢文洲, 吴永贵, 等.大宝山矿水外排的环境影响:Ⅱ.农业生态系统.生态环境, 2005, 14(2):169-172 Lin Chuxia, Lu Wenzhou, Wu Yonggui, et al.Environmental impacts of acid mine drainage from the Dabaoshan Mine:Ⅱ.Agricultural ecosystem.Ecology and Environment, 2005, 14(2):169-172(in Chinese)
[16]  Wong J.W.C., Ip C.M., Wong M.H.Acid-forming capacity of lead-zinc mine tailings and its implications for mine rehabilitation.Environmental Geochemistry and Health, 1998, 20(3):149-155
[17]  Espa?a J.S., Toril E.G., Pamo E.L., et al.Biogeochemistry of a hyperacidic and ultraconcentrated pyrite leachate in San Telmo Mine (Iberian Pyrite Belt, Spain).Water, Air, Soil Pollut., 2008, 194(1):243-257
[18]  Druschel G.K., Baker B.J., Gihring T.M., et al.Acid mine drainage biogeochemistry at IronMountain, California.Geochemical Transactions, 2004, 5(2):13-32
[19]  Fortin D., Davis B., Beveridge T.J.Role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings.FEMS Microbiology Ecology, 1996, 21(1):11-24
[20]  Bonnissel G.P., Alnot M., Ehrhardt J.J., et al.Surface oxidation of pyrite as a function of pH.Environ.Sci.& Technol., 1998, 32(19):2839-2845
[21]  Sracek O., Choquette M., Gelinas P., et al.Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Quebec, Canada.J.Contam.Hydrol., 2004, 69(1-2):45-71
[22]  Baker B.J., Tyson G.W., Webb R.I., et al.Lineages of acidophilic archaea revealed by community genomic analysis.Science, 2006, 314(5807):1933-1935
[23]  郭伟, 李培军.阴离子表面活性剂(LAS)环境行为与环境效应.安全与环境学报, 2004, 4(6):37-42 Guo Wei, Li Peijun.Environmental behavior and effect of anionic surfactant (LAS).Journal of Safety and Environment, 2004, 4(6):37-42(in Chinese)
[24]  Piret J., Lamontagne J., Bestman-Smith J., et al.In vitro and in vivo evaluations of sodium lauryl sulfate and dextran sulfate as microbicides against herpes simplex and human immunodeficiency viruses.J.Clin.Microbiol., 2000, 38(1):110-119
[25]  侯振建.食品添加剂及其应用技术.北京:化学工业出版社, 2004
[26]  宁正祥, 高建华.食品防腐剂的抗菌机理及构效关系.广州食品工业科技, 1997, 13(3):1-4 Ning Zhengxiang, Gao Jianhua.Food preservatives antibacterial mechanism and structure-activity relationship.Guangzhou Food Science and Technology, 1997, 13(3):1-4(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133