全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氧活性粒子氧化NO生成HNO3

Keywords: 氧活性粒子(O2+,O3),羟基自由基,NOx氧化率,硝酸,强电离放电

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用强电离介质阻挡放电方法制取高浓度氧活性粒子(O2+、O3)并注入气体外排烟道中,实现O2+、O3氧化NO转化成资源酸(HNO3)的等离子化学反应。描述强电离放电的氧活性粒子产生器,讨论烟道中O2+、O3氧化NO成HNO3等离子体反应机制,分析回收酸液的NO2-、NO3-离子种类及浓度。考察强电离放电等离子体源的输入功率、水体积百分比、气体温度、气体流速对NOx氧化率的影响。氧化率为97.2%的最佳实验条件是:O2+浓度为1.38×1010个/cm3,O3浓度为210mg/L,烟气温度为65℃,H2O体积浓度为5.6%,停留时间为0.94s。

References

[1]  Chui E. H., Gao H. Estimation of NOx emissions from coal-fired utility boilers. Fuel, 2010,89(10):2977-2984
[2]  Tian H. Z., Liu K. Y., Zhou J. R., et al. Atmospheric emission inventory of hazardous trace elements from China\'s coal-fired power plants-temporal trends and spatial variation characteristics. Environmental Science & Technology, 2014,48(6):3575-3582
[3]  Wang W. C., McCool G., Kapur N., et al. Mixed-phase oxide catalyst based on mn-mullite oxidation in diesel exhaust. Science, 2012, 337(6096): 832-835
[4]  Apostolescu N., Geiger B., Hizbullah K., et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Applied Catalysis B: Environmental, 2006, 62(1-2): 104-114
[5]  Miessner H., Francke K. P., Rudolph R., et al. NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction. Catalysis Today, 2002, 75(1-4): 325-330
[6]  Adewuyi Y.G., He X. D., Shaw H., et al. Simultaneous Absorption and oxidation of NO and SO2 by aqueous solutions of sodium chlorite. Chemical Engineering Communications, 1999, 174(1): 21-51
[7]  Chu H., Chien T. W., Li S. Y. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions. Science of the Total Environment, 2001, 275(1-3): 127-135
[8]  Sakai M., Su C. L., Sasaoka E. Simultaneous removal of SOx and NOx using slaked lime at low temperature. Industrial Engineering Chemistry Research, 2002, 41(20): 5029-5033
[9]  Durme J. V., Dewulf J., Leys C., et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008, 78(3-4): 324-333
[10]  Yamamoto T., Fujishima H., Okubo M., et al. Pilot-scale NOx and SOx removal from boiler emission using indirect-plasma and chemical hybrid process. IEEE Transactions on Industry Applications, 2010, 46(1): 29-37
[11]  Wang Z. H., Zhou J. H., Zhu Y. Q., et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Processing Technology, 2007, 88(8): 817-823
[12]  Bai M. D., Yang B., Xue X. H., et al. Studies on the measuring method of number density of ions in the high speed flow field. IEEE Transactions on Plasma Science, 2009, 37(11): 2257-2260
[13]  Penetrante B.M., Bardsley J.N., Hsiao M.C. Kinetic analysis of non-thermal plasmas used for pollution control. Japanese Journal of Applied Physics, 1997, 36(7B): 5007-5017
[14]  Saavedra H. M., Pacheco M. P., Pacheco-Sotelo J. O., et al. Modeling and experimental study on nitric oxide treatment using dielectric barrier discharge. IEEE Transactions on Plasma Science, 2007, 35(5):1533-1540
[15]  Lowke J. J., Morrow R. Theoretical analysis of removal of oxides of sulfur and nitrogen in pulsed operation of electrostatic precipitators. IEEE Transactions on Plasma Science, 1995, 23(4): 661-671
[16]  Bai M. D., Hu J. Oxidization of SO2 by reactive oxygen species for flue gas desulfurization and H2SO4 production. Plasma Chemistry Plasma Process, 2012, 32(1): 141-152
[17]  Mollner A. K., Valluvadasan S., Feng L., et al. Rate of gas phase association of hydroxyl radical and nitrogen dioxide. Science, 2010, 330(6004): 646-649
[18]  Lin H., Gao X., Luo Z. Y., et al. Removal of NOx with radical injection caused by corona discharge. Fuel, 2004, 83(10): 1349-1355
[19]  Granite E. J., Pennline H. W. Photochemical removal of mercury from flue gas. Industrial Engineering Chemistry Research, 2002, 41(22): 5470-5476
[20]  Granite E. J., Freeman M. C., Hargis R. A., et al. The thief process for mercury removal from flue gas. Journal of Environmental Management, 2007, 84(4): 628-634
[21]  Roth J. R. Industrial plasma engineering, Volume 2: Applications to nonthermal plasma processing. Taylor & Francis, ISBN-10: 0750303174, ISBN-13: 978-0750303170,2001
[22]  Dorai R., Kushner M. J. Repetitively pulsed plasma remediation of NOx in soot laden exhaust using dielectric barrier discharges. Journal of Physics D: Applied Physics, 2002, 35(22): 2954-2968
[23]  Bai M. D., Wang S. L., Chen Z. G., et al. The effects of submicrometer dust charging and coagulation on ESP efficiency by using alternating electric field. IEEE Transactions on Plasma Science, 2010, 38(2): 127-132
[24]  Richter A., Burrows J. P., Nuss H., et al. Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 2005, 437(7055): 129-132
[25]  Huang L. W., Dang Y. X. Removal of SO2 and NOx by pulsed corona combined with in situ Ca(OH)2 absorption. Chinese Journal of Chemical Engineers, 2011, 19(3): 518-522

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133