全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同氮素浓度与空间条件下青萍生长特征

Keywords: 青萍,生长特征,相对生长速率,环境最大承载量

Full-Text   Cite this paper   Add to My Lib

Abstract:

以西部地区优势浮萍品种青萍为实验对象,研究了它在不同总氮(TN)初始浓度和空间条件下的生长特征。结果表明,在表面积为95cm2,TN初始浓度为0、1、2、3mg/L的条件下,青萍的生长能较好地服从经典生长模型,对数生长阶段的相对生长速率(RGR)随TN浓度的增长而线性增长,分别为0.10、0.11、0.13、0.13d-1。在TN浓度为10mg/L,表面积为95、130和230cm2的条件下,青萍的生长能较好地服从Logistic生长模型,其环境最大承载量和对数生长阶段的RGR分别为1899、2101和1962g/m2以及0.21、0.21和0.20d-1。

References

[1]  Toyama T., Sei K., Yu N., et al. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: A mechanism of accelerated biodegradation of phenol. Water Research, 2009, 43(15): 3765-3776
[2]  Sasmaz A., Obek E. The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents. Ecological Engineering, 2009, 35(10): 1564-1567
[3]  Cheng J., Landesman L., Bergmann B. A., et al. Nutrient removal from swine lagoon liquid by Lemna minor 8627. Transactions of the Asae, 2002, 45(4): 1003-1010
[4]  中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 2004
[5]  Bergmann B. A., Cheng J., Classen J., et al. Nutrient removal from swine lagoon effluent by duckweed. Transactions of the American Society of Agricultural Engineers, 2000, 43(2): 263-269
[6]  Cheng J., Bergmann B. A., Classen J. J., et al. Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource Technology, 2002, 81(1): 81-85
[7]  Van Der Steen P., Brenner A., Van Buuren J., et al. Post-treatment of UASB reactor effluent in an integrated duckweed and stabilization pond system. Water Research, 1999, 33(3): 615-620
[8]  Al-Nozaily F. A., Alaerts G. Performance of duckweed-covered sewage lagoons in Sana\'a, Yemen, depending on sewage strength. Journal of Water Supply: Research and Technology-AQUA, 2002, 51(3): 173-182
[9]  Awuah E., Lubberding H. J., Asante K., et al. The effect of pH on enterococci removal in Pistia-, duckweed-and algae-based stabilization ponds for domestic wastewater treatment. Water Science and Technology, 2002, 45(1): 67-74
[10]  El-Shafai S. A., El-Gohary F. A., Nasr F. A., et al. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresource Technology, 2007, 98(4): 798-807
[11]  Short M. D., Cromar N. J., Nixon J. B., et al. Relative performance of duckweed ponds and rock filtration as advanced in-pond wastewater treatment processes for upgrading waste stabilisation pond effluent: A pilot study. Water Science and Technology, 2007, 55(11): 111-119
[12]  Van Der Steen N. P., Nakiboneka P., Mangalika L., et al. Effect of duckweed cover on greenhouse gas emissions and odour release from waste stabilisation ponds. Water Science and Technology, 2003, 48(2): 341-348
[13]  Edwards P., Hassan M. S., Chao C. H., et al. Cultivation of duckweeds in septage-loaded earthen ponds. Bioresource Technology, 1992, 40(2): 109-117
[14]  Yamaga F., Washio K., Morikawa M. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 Isolated from the rhizosphere of duckweed Lemna aoukikusa. Environmental Science & Technology, 2010, 44(16): 6470-6474
[15]  Khellaf N., Zerdaoui M. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology, 2009, 100(23): 6137-6140
[16]  Hammouda O., Gaber A., Abdel-Hameed M. S. Assessment of the effectiveness of treatment of wastewater-contaminated aquatic systems with Lemna gibba. Enzyme and Microbial Technology, 1995, 17(4): 317-323
[17]  Ran N., Agami M., Oron G. A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel. Water Research, 2004, 38(9): 2241-2248
[18]  Sutton D. L., Ornes W. H. Phosphorus removal from static sewage effluent using duckweed. Journal of Environmental Quality, 1975, 4(3): 367-370
[19]  Frédéric M., Samir L., Louise M., et al. Comprehensive modeling of mat density effect on duckweed (Lemna minor) growth under controlled eutrophication. Water Research, 2006, 40(15): 2901-2910
[20]  Alaerts G. J., Mahbubar R., Kelderman P. Performance analysis of a full-scale duckweed-covered sewage lagoon. Water Research, 1996, 30(4): 843-852
[21]  Koles S. M., Petrell R. J., Bagnall L. O. Duckweed culture for reduction of ammonia, phosphorous and suspended solids from algal-rich water. In: Aquatic Plants for Water Treatment and Resource Recovery, Magnolia, Orlando, 1987. 769-774
[22]  Skillicorn P., Spira W., Journey W. Duckweed Aquaculture: A new Aquatic Farming System for Developing Countries. Washington, USA: World Bank, 1993
[23]  Al-Nozaily F., Alaerts G., Veenstra S. Performance of duckweed-covered sewage lagoons:I. Oxygen balance and COD removal. Water Research, 2000, 34(10): 2727-2733
[24]  Reinhold D. M., Saunders F. M. Phytoremediation of fluorinated agrochemicals by duckweed. Transactions of the Asabe, 2006, 49(6): 2077-2083
[25]  Song G., Hou W., Wang Q., et al. Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza. Bioresource Technology, 2006, 97(15): 1865-1869
[26]  黄玉屏, 刘义, 沈萍, 等. 盐生盐杆菌生长过程热动力学研究. 高等学校化学学报, 2002, 23(2): 251-254 Huang Yuping, Liu Yi, Shen Ping, et al. Thermokinetic study on the growth process of Halobacterium Halobium. Chemical Research in Chinese Universities, 2002, 23(2): 251-254(in Chinese)
[27]  中国科学院上海植物生理研究所. 现代植物生理学实验指南. 北京: 科学出版社, 1999
[28]  Chaiprapat S., Cheng J. Y., Classen J. J., et al. Modeling nitrogen transport in duckweed pond for secondary treatment of swine wastewater. Journal of Environmental Engineering, 2003, 129(8): 731-739
[29]  逄勇, 濮培民, 魏阳春, 等. 人工生态系统净化水质模型研究. 生态学报, 1998, 18(6): 629-633 Pang Yong, Pu Peimin, Wei, Yangchun, et al. The water quality model of an artificial purification ecosystem near a water plant. Acta Ecologica Sinica, 1998, 18(6): 629-6333(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133