全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氧化-吸附法处理含铁废盐酸及其资源化

Keywords: 含铁废盐酸,资源化技术,双氧水氧化,树脂吸附分离

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出并研究了高效氧化与强化吸附相结合的含铁废酸资源化处理新工艺。系统研究了其氧化过程的适宜工艺条件并考察了吸附分离单元中的主要工艺参数对铁离子去除率的影响规律。实验结果显示,采用双氧水氧化废盐酸中Fe2+将不会引入其他污染因子,双氧水的最佳投加摩尔数为Fe2+浓度的1.2倍,氧化时间优选为2h;氧化后的含铁废盐酸经过强碱阴离子交换树脂NDA900分离去除大部分铁离子,若采用固定床双柱串联方式运行,铁离子分离去除率可达99.9%,处理后盐酸可返回酸洗工序重复利用。吸附饱和后的树脂仅使用自来水就可以实现完全再生,再生液中三氯化铁浓度高达40~50g/L。这一工艺有望实现废盐酸及其中铁离子的综合利用,为相关行业清洁生产水平的提升提供技术支持。

References

[1]  吴光红,储诚山. 钢材酸洗废水的综合利用. 工业用水与废水, 1999, 30(3):32-34 Wu G.H., Chu C.S. The reuse of steel pickling waste liquor. Industrial Water & Wastewater, 1999, 30(3):33-34(in Chinese)
[2]  陈俊章. 冷轧带钢坯酸洗及酸再生. 北京:冶金工业部出版社,1985.
[3]  Agrawal A., Sahu K.K. An overview of the recovery of acid from spent acidic solutions from steel andelectroplating industries. Journal of Hazardous Materials, 2009,171(1-3):61-75
[4]  曹殿显,张莉红. 钢铁行业盐酸酸洗的环境影响评价. 化工科技市场,2009, 32(2):15-17 Cao D. X., Zhang L. H. EIA for hydrochloric-acid pickling in steel field. Chemical Technology Market, 2009, 32(2):15-17(in Chinese)
[5]  Stocks C., Wood J., Guy S. Minimisation and recycling of spent acid wastes from galvanizing plants. Resources, Conservation and Recycling, 2005, 44(2): 153-166
[6]  王海燕. 盐酸再生技术的特点及应用分析. 河北冶金,2007,60(4):50-51 Wang H.Y. Analysis about the features and application of recovery of hydrochloric acid. Hebei Metallurgy, 2007,60(4):50-51(in Chinese)
[7]  万金保. 纳滤膜处理酸洗废液新工艺. 膜科学与技术,2000,20(3):59-61 Wan J.B. New disposition technology of waste acid liquor by nanofiltration. Membrane Science and Technology,2000,20(3):59-61(in Chinese)
[8]  洪运涛, 乔梁, 刘新华. Ruthner-喷雾焙烧法废盐酸再生技术在冷轧中的应用. 现代化工,2005,25(1):48-50 Hong Y.T., Qiao L., Liu X.H. Application of Ruthner -spray hydrochloric acid regeneration technology in cold rolling. Modern Chemical Industry, 2005, 25(1):48-50(in Chinese)
[9]  孙安妮, 孙根行. 废盐酸再生利用研究进展. 当代化工, 2011, 40(11): 1178-1181 Sun A. N., Sun G. X. Research progress in regeneration and utilization of waste hydrochloric acid. Contemporary Chemical Industry, 2011, 40(11): 1178-1181(in Chinese)
[10]  Randolph A., Larson M. Theory of Particulates. Academic Press, New York, 1971
[11]  JrA D., Underwood A. L., 定量分析. 何葆善, 陈全伦, 周增柟,译. 上海: 上海科学技术出版社, 1980.330
[12]  Brady G. W. Structure in ionic solutions II. The Journal of Chemical Physics, 1958,28(3):464-469
[13]  Nagy L., Ohtaki H., Yamaguchi T., et al. EXAFS study of iron (Ⅲ) complexes of sugar-type ligands. Inorganica Chimica Acta, 1989,159(2):201-207
[14]  Sharma S. K., Sehgal V. N., Bami H. L., et al. Raman study of the structure of ferric chloride in frozen aqueous solutions. Journal of Inorganic and Nuclear Chemistry, 1975,37(12):2417-2419
[15]  Apted M. J., Waychunas G. A., Brown G. E. Structure and specification of iron complexes in aqueous solutions determined by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 1985,49(10):2081-2089
[16]  Gu B., Brown G. M., Maya L., et al. Regeneration of perchlorate (ClO4-)-loaded anion exchange resins by a novel tetrachloroferrate (FeCl4-) displacement technique. Environmental Science & Technology, 2001, 35(16): 3363-3368
[17]  Brown G. M., Gu B.,Moyer B. A., et al. Regeneration of strong-base anion-exchange resins by sequential chemical displacement. US Patent Application Ser. No. 09-491,242,2000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133