Bamforth S. M., Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and futuredirections. Journal of Chemical Technology and Biotechnology, 2005, 80(7): 723-736
[2]
Samanta S. K., Singh O. V., Jain R. K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotechnology, 2002, 20(6):243-248
[3]
Atlas R. M., Cerniglia C. E. Bioremediation of petrol- eum pollutants. Bioscience, 1995, 35(1-3): 317-327
[4]
Santos E. C., Jacques R. J., Bento F.M., et al. Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresource Technology, 2008, 99(7): 2644-2649.
[5]
Zeinali M., Vossoughi M., Ardestani S. K. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere, 2008, 72(6): 905-909
[6]
Hwang G., Park S.R., Lee C. H., et al. Influence of naphthalene biodegradation on the adhesion of Pseud omonas putida NCIB 9816-4 to a naphthalene-contaminated soil. J. Hazard. Mater., 2009, 172(1):491-493
[7]
Calvo C., Toledo F.L., González-López J. Surfactant activity of a naphthalene degrading Bacillus pumilus strain isolated from oil sludge. J. Biotechnology, 2004,109(3): 255-262
[8]
Rivas F. J. Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments. J. Hazard. Mater., 2006, 138(2):234-251
[9]
Semple K. T., Doick K. J., Wick L.Y., et al. Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environ. Pollut., 2007, 150(1): 166-176
[10]
Lin C., Gan L., Chen Z. L. Biodegradation of naphthalene by strain Bacillus fusiformis(BFN). Journal of Hazardous Materials, 2010, 182(1-3): 771-777
[11]
谢文焕,姜成红,程迎,等.碳纳米管对嗜酸氧化亚铁硫杆菌的毒性效应及其作用机制.环境工程学报,2013, 7(9):3671-3676 Xie W. H., Jiang C. H., Cheng Y., et al. Toxic effect of CNTs on growth of Acidithiobacillus ferrooxidans and the mechanism of toxication. Chinese Journal of Environmental Engineering, 2013, 7(9): 3671-3679(in Chinese)
[12]
Harris R. G., Wells J. D., Johnson B. B. Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces. Colloids Surf. A, 2001, 180(1-2): 131-140
[13]
Zhang L. S., Wu W. Z., Wang J. L. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. J. Environ. Sci., 2007, 19(11): 1293-1297
[14]
Zhou Y., Kuang Y., Li W. Y., et al. A combination of bentonite-supported bimetallic Fe/Pd nanoparticles and biodegradation for the remediation of p-chlorophenol in wastewater. Chemical Engineering Journal, 2013, 223(1): 68-75
[15]
Spontón M., Casis N., Mazo P., et al. Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from castor oil. International Biodeterioration & Biodegradation, 2013, 85: 85-94
[16]
Bazu?a P.A., Lu A. H., Nitz J. J., et al. Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach, Micropor. Mesopor. Mater., 2008, 108(1-3): 266-275
[17]
Li H. F., Xi H. A., Zhu S., et al. Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Micropor. Mesopor. Mater.,2006, 96(1-3): 357-362
[18]
Cabal B., Budinova T., Ania C., et al. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.Journal of Hazardous Materials, 2009, 161(2-3): 1150-1156
[19]
Anbia M., Ershad S., Moradi. Adsorption of naphthalene-derived compounds from water by chemically oxidized nanoporous carbon. Chemical Engineering Journal, 2009, 148(2-3): 452-458
[20]
Swiatkowski A., Pakula M., Biniak S., et al. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(Ⅱ) ions. Carbon, 2004, 42(15): 3057-3069
[21]
Rios R. A., Alves D. E., Dalmázio I., et al. Tailoring activated carbon by surface chemical modification with O, S, and N containing molecules. J. Mater. Res., 2003, 6(2): 129-135