全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

采油废水厌氧处理系统的微生物群落特征

Keywords: 采油废水,厌氧处理,产甲烷菌,厌氧烃降解

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了深入认识石油烃的厌氧降解过程,利用分子生物学技术分析了大庆油田采油废水处理系统厌氧池和进水中的微生物群落特征。基于DGGE和克隆文库的分析结果均表明,厌氧生物膜中存在的古菌源自于采油废水。厌氧生物膜和采油废水中的古菌主要是产甲烷菌,包括嗜甲基的Methanomethylovoransthermophila和利用氢和甲酸的Methanolineatarda。值得注意的是,氢营养型的M.tarda在厌氧生物膜中得到了富集。进水和厌氧生物膜中的细菌群落结构明显不同。进水中的主要细菌类群为Epsilonproteobacteria,而生物膜中的主要类群为Nitrospira和Deltaproteobacteria。在厌氧生物膜中发现许多与产甲烷古菌(尤其是氢营养型产甲烷菌)协同降解石油烃类物质的细菌相关克隆:其中一个克隆与Syntrophus具有较高的同源性,该类菌是产甲烷菌介导的厌氧烃降解微生物区系中的关键细菌;许多Deltaproteobacteria克隆属于groupTA类群,该类群细菌主要参与芳香族化合物产甲烷菌介导的厌氧降解过程。这些结果表明,在大庆油田采油废水厌氧处理系统中已经建立起由产甲烷菌所介导的厌氧石油烃降解的微生物区系。

References

[1]  Fakhru\'l-razi A., Pendashteh A., Abdullah L C., et al. Review of technologies for oil and gas produced water treatment. J.Hazard.Mater., 2009, 170(2-3):530-551
[2]  Lu M., Zhang Z., Yu W., et al. Biological treatment of oilfield-produced water: A field pilot study. Int.Biodeterior Biodegradation, 2009, 63(3):16-21
[3]  Yu Z., Garcia-Gonzalez R., Schanbacher F.L., et al. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by archaea-specific PCR and denaturing gradient gel electrophoresis. Appl.Environ.Microbiol., 2008, 74(3): 889-893
[4]  Brofft J.E., McarthurJ.V., Shimkets L.J. Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environ. Microbiol., 2002, 4(11): 764-769
[5]  Baker G.C., Smith J.J., Cowan D.A. Review and re-analysis of domain-specific 16S primers. J.Microbiol.Methods, 2003, 55(3): 541-555
[6]  Schloss P.D., Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl.Environ.Microbiol., 2005, 71(3): 1501-1506
[7]  Hugenholtz P., Pitulle C., Hershberger K.L., et al. Novel division level bacterial diversity in a Yellowstone hoto spring. J.Bacteriol., 1998, 180(2): 366-736
[8]  Jones D.M., Head I.M., Gray N.D., et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2008, 451(7175): 176-180
[9]  Zengler K., Richnow H.H., Rossello-Mora, et al. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999, 401(6750): 266-269
[10]  Jones D.M., Head I.M., Gray N.D., et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2008, 451(7175): 176-180
[11]  Keith L.H., Telliard W.A. Priority pollutants I:A perspective view. Environ.Sci.& Technol., 1979, 13(4):16-23
[12]  Wang Z., Li J., Hesham L., et al. Co-variations of bacterial composition and catabolic genes related to PAH degradation in a produced water treatment system consisting of successive anoxic and aerobic units. Sci. of Total Environ., 2007, 373(1): 356-362
[13]  Muyzer G., De Waal E.C., UitterlindenI A.G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl.Environ.Microbiol., 1993, 59(3): 695-700
[14]  Dojka M.A., Hugenholtz P., Haack S.K., et al. Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl.Environ.Microbiol., 1998, 64(10): 3869-3877
[15]  Li H., Yang S.Z., Mu B.Z., et al. Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol.Lett, 2006, 257(1): 92-98
[16]  Grabowski A., Nercessian O., Fayolle F., et al. Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol.Ecol., 2005, 54(3): 427-443
[17]  Sekiguchi Y., Kamagata Y., Syutsubo K., et al. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology, 1998, 144(Pt 9):2655-2665
[18]  Roest K., Altinbas M., Paulo P.L., et al. Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor. Microb.Ecol., 2005, 50(3): 440-446
[19]  Rabus R., Widdel F. Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Appl.Environ.Microbiol., 1996, 62(4): 1238-1241
[20]  Ehrenreich P., Behrends A., Harder J., et al. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch. Microbiol., 2000, 173(1): 58-64
[21]  Widdeli F., Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr.Opin.Biotechnol., 2001, 12(3): 259-276
[22]  Nilsen R.K., Torsvik T., Lien T. Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int.J.Syst.Bacteriol., 1996, 46(2):397-402
[23]  Jiang B., Parshina S.N., Van Doesburg W., et al. Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int.J.Syst.Evol.Microbiol., 2005, 55(Pt 6): 2465-2470
[24]  Garcia J.L., Patel B.K., Olluver B. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe, 2000, 6(4): 205-226
[25]  Dolfing J., Larter S.R., Head I.M. Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J., 2008, 2(4): 442-452

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133