Grindley T., Goldsmith H. Development of zinc ferrite desulfurization sorbents for large-scale testing. New York, USA: American Institute of Chemical Engineers, 1987
[2]
Ohtsuka Y., Tsubouchi N., Kikuchi T., et al. Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas. Power Technology, 2009, 190 (3): 340-347
[3]
Mitchell S. C. Hot gas cleanup of sulfur, nitrogen, minor and trace elements. London, UK: IEA Coal Research, 1998
Gupta R., Gangwal S. K., Jain S. C. Development of zinc ferrite sorbents for desulfurization of hot coal gas in a fluid-bed reactor. Energy Fuels, 1992, 6 (1): 21-27
[6]
Jha M. C., Kepworth M. T., Baltich L. K. Enhanced sorbent durability for hot coal gas desulfurization: Final Report. Morgantown, USA: AMAX Extractive Research and Development Center, 1986
[7]
Ayala R. E., Marsh D. W. Characterization and long-range reactivity of zinc ferrite in high temperature desulfurization processes. Ind. Eng. Chem. Res., 1991, 30 (1): 55-60
[8]
Dolan M. D., Ⅱyushechkin A. Y., McLennan K. G., et al. Sulfur removal from coal-derived syngas: Thermodynamic considerations and review. Asia-Pac. J. Chem. Eng., 2012, 7 (1): 1-13
[9]
Jeyadevan B., Tohji K., Nakatsuka K., et al. Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn-Zn ferrite using extended X-ray absorption fine structure. Journal of Magnetism and Magnetic Materials, 2000, 217 (1): 99-105
[10]
Skrzypski J., Bezverkhyy I., Heintz O., et al. Low temperature H2S removal with metal-doped nanostructure ZnO Sorbents: study of the origin of enhanced reactivity in Cu-containing materials. Ing. Eng. Chem. Res., 2011, 50 (9): 5714-5722
[11]
Gupta R. P., Gangwal S. K. Enhanced durability of desulfurization sorbent for fluidized-bed applications. North Carolina, USA: Research Triangle Institute, Research Triangle Park, 1992