全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

突变灰盖鬼伞过氧化物酶降解刚果红的响应面法优化分析

Keywords: 刚果红降解,单因素分析,响应面分析,灰盖鬼伞鬼氧化物酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

酶法降解偶氮染料刚果红是一个复杂的过程,受温度、pH、酶量、刚果红浓度和双氧水浓度显著影响。为研究各因素及因素间交互作用对刚果红降解影响,提高刚果红的降解率,分别使用单因素法和响应面分析法对刚果红降解条件进行了优化。单因素实验结果显示灰盖鬼伞过氧化物酶降解刚果红的最适条件为:pH5.0、32℃、酶量4.98U、双氧水0.1mmol/L、刚果红20mg/L,此时刚果红最高降解率为34.84%。然后选双氧水浓度、刚果红浓度和灰盖鬼伞过氧化物酶量作为3个因素,通过中心组合设计实验,用响应面法对刚果红降解进行优化分析,最后得到一个拟合度良好的二次多项方程模型(R2=0.9900)。方差分析结果显示,刚果红浓度和酶量是影响最显著的因素,双氧水与酶以及染料与酶之间的交互作用极显著。响应面分析优化后的反应体系为:双氧水浓度0.15mmol/L,刚果红浓度为27.21mg/L,酶为2.07U,在此条件下,刚果红降解率达58.13%。

References

[1]  Narayan H., Alemu H., Alotsi D. N., et al. Fast and complete degradation of Congo red under visible light with Er3+ and Nd3+ ions doped TiO2 nanocomposites. Nanotechnology Development, 2012, 2(1):5-11
[2]  Wambuguh D., Chianelli R. R. Indigo dye waste recovery from blue denim textile effluent: A byproduct synergy approach. New Journal of Chemistry, 2008, 32(12): 2189-2194
[3]  Vyas B. R. M., Mollitoris H. P. Involvement of an extracellular H2O2-dependent lignnolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol Brilliant Blue R. Applied Environmental Microbiology, 1995, 61(11): 3919-3927
[4]  袁强, 江玲, 李辉, 等. 低温高效催化降解刚果红染料的Fe/CeO2催化剂.厦门大学学报(自然科学版), 2011, 50(1):70-75 Yuan Q., Jiang L., LI H., et al. Fe/CeO2 catalysts for highly efficient degradation of Congo red at low temperature. Journal of Xiamen University(Natural Science), 2011, 50(01):70-75 (in Chinese)
[5]  Janez L., Albin P. Catalytic wet air oxidation processes:A review. Catalysis Today, 2007, 124(3-4):172-184
[6]  Downie B., Hilhorst H. W. M., Bewley J. D. A new assay for quantifying endo-β-D-mannanase activity using congo red dye. Phytochemistry, 1994, 36(4): 829-835
[7]  M?nnist? M. K., H?ggblom M. M. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Systematic and Applied Microbiology, 2006, 29(3):229-243
[8]  Tandon K. N., Mehrotra R. C. Studies on adsorption indicators: Titration of iodide in presence of chloride. Mechanism of the colour changes during argentometric titrations with congo red as adsorption indicator. Analytica Chimica Acta, 1962, 26: 589-594
[9]  Chatterjee S., Lee D. S., Lee M. W., et al. Enhanced adsorption of congo red aqueous solution by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresource Technology, 2009, 100(11):2803-2809
[10]  Tapalad T., Neramittagapong A., Neramittagapong S., et al. Degradation of Congo red dye by ozonation. Chiang Mai Journal of Science, 2008, 35 (1): 63-68
[11]  Fu Y., Tiraraghavan Y. Removal of Congo red from an aqueous solution by fungus Aspergillus niger. Advances in Enviromental Research, 2002, 7(1): 239-247
[12]  Pouretedal H. R., Keshavarz M. H. Study of Congo red photodegradation kinetic catalyzed by Zn1-XCuXS and Zn1-XNiXS nanoparticles. International Journal of the Physical Sciences, 2011, 6(27):6268-6279
[13]  Ramya M., Anusha B., Kalavath S., et al. Biodecolourisation and biodegradation of reactive blue by Aspergillus sp. African Journal of Biotechnology, 2007, 6(12): 1441-1445
[14]  Li X. D., Jia R., Li P. S., et al. Response surface analysis for enzymatic decolorization of Congo red by manganese peroxidase. Journal of Molecular Catalysis B Enzyatic, 2009, 56(1): 1-6
[15]  Mohori M., Teodorovi S., Golob V., et al. Fungal and enzymatic decolourisation of artificial textile dye baths. Chemosphere, 2006, 63(10):1709-1717
[16]  Younes S. B., Bouallagui Z., Gargoubi A., et al. Investigation of dyes degradation intermediateees with Scytalidium thermophilum laccase. Europ Food Research Technology, 2011, 233(5): 751-758
[17]  Forootanfar H., Moezzi A., Aghaie Khozani M., et al. Synthetic dye decolorization by three sources of fungal laccase. Iranian Journal of Environmental Health Sciences & Engineering, 2012, 9(1): 27-37
[18]  Cripps C., Bumpus J.A., Aust S.D. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Applied Environmental Microbiology, 1990, 56(4): 1114-1118
[19]  Ahmedi A., Abouseoud M., Couvert A. Enzymatic degradation of Congo red by turnip (Brassica rapa) peroxidase.Zeitschrift für Naturforschung. C, Journal of Biosciences, 2012, 67(7-8):429-36
[20]  Li X. L., Zhang J., Jiang Y.C., et al. Highly Efficient Biodecolorization/Degradation of Congo Red and Alizarin Yellow R by from Chloroperoxidase Caldariomycesfumago: Catalytic mechanism and degradation pathway. Industrial & Engineering Chemistry Research, 2013, 52 (38):13572-13579
[21]  Montgomery D. C. Response surface methods and other approaches to process optimization In: Design and Analysis of Experiments.New York:John Wiley and Sons, 1997
[22]  董冰雪. 白腐真菌木质素降解酶的合成、定点突变、毕赤酵母表达以及它们对造纸工业中木质纤维原料降解的研究. 广州:中山大学博士学位论文, 2008 Dong B. X. Synthesis, site-specific mutagenesis, expression in Pichia pastoris of ligninolytic enzymes from the white rot fungi and their degradability to lignocellusic stuff used for paper industry. Guangzhou: Doctor Dissertation of Sun Yat-sen University, 2008 (in Chinese)
[23]  Silav E. M., Rogez H. L., arondelle Y., et al. Optimization of extraction of phenollics from Inga edulis leaves using response surface methodology. Journal of Seperation and Purification Methods, 2007, 55 (3): 381-387
[24]  Duarte-Vazquez M. A., Garcia-Almen-darez B., Regalado C., et al. Purification and properties of a neutral peroxidase from turnip (Brassica napus L var purple top white globe) roots. Journal of Agriculture and Food Chemistry, 2001, 49(9): 4450-4456
[25]  Yousefi V., Kariminia H. R. Statistical analysis for enzymatic decolorization of Acid Orange 7 by Coprinus cinereus pero-xidase. International Biodeterioration & Biodegradation, 2010, 64(3): 245-252
[26]  Silva M. R. D., Vasconcelos de S\'a R. B., Russo C., et al. The use of HRP in decolorization of reactive ryes and roxic-ological evaluation of their products. Enzyme research, 2010, 2010: 703824 doi: 10. 4061/2010/70 3824
[27]  阮文兵, 陈必钦, 陈素华, 等. 响应面分析法优化(R)-扁桃酸发酵培养基. 中国生物工程杂志, 2010, 30(8):112-117 Ruan W. B., Chen B. Q., Chen S. H., et al. Optimization of(R)-mandelic acid fermen tation medium by using response surface methodology. China Biotechnology, 2010, 30(8):112-117 (in Chinese)
[28]  Joosten V., Roelofs F. S., Dries N. V. D., et al. Production of bifunctional proteins by Aspergillus awamori: Llama variable heavy chain antibody fragment (VHH) R9 coupled to Arthromyces ramosus peroxidase (ARP). Journal of Biotechnology, 2005, 120(4): 347-359
[29]  Bhunia A., Durani S., Wangikar P. P. Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnology and Bioengineering, 2001, 72(5):562-567
[30]  Maddhinni V. L., Vurimindi H. B., Yer-ramilli A. Degradation of azo dye with horseradish peroxidase. Journal Indian Institue Science, 2006, 86(5):507-514
[31]  Maria S., De Souza A. G. U., Forgiarini E., et al. Toxicity of textile and their degradation by the enzyme horseradish peroxidase. Journal of Hazardous Materials, 2007, 147(3): 1073-1078
[32]  Boucherit N., Abouseoud M., Adour L. Degradation of direct azo dye by Cucurbita pepo free and immobilized peroxidase. Journal of Environmental Sciences, 2013, 25(6):1235-1244
[33]  Liu J. Z., Wang T. L., Ji L. N. Enhanced dye decolorization efficiency by citraconic anhydride-modified horseradish peroxidese. Journal of Molecular Catalysis B: Enzymatic, 2006, 41(3-4):81-86
[34]  Deveci T., Unyayar A., Mazmanci M. A. J. Production of remazol brillant blue R decolourising oxygenase from the culture filtrate of Funalia trogii ATCC 20080 0. Journal of Molecular catalysis B: Enzymeatic, 2004, 30(1):25-32
[35]  Mielgo I., López C., Moreira M.T., et al. Oxidative degradation of azo dye by manganese peroxidase under optimized condition. Journal of Biotechnology Progress, 2003, 19(2): 325-331

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133